Skip to main content

Mixed-Species Forests: The Development of a Forest Management Paradigm

  • Chapter
  • First Online:
Mixed-Species Forests

Abstract

In this chapter we show that most forests are naturally mixed and species diverse. However, the degree of species richness varies considerably and declines from tropical to temperate and boreal regions. The compositional and structural diversity of man-made or secondary forests is in most cases substantially lower than in the original, unmanaged native forest. The greater simplicity of managed, secondary forests has a number of causes including historical factors, current management goals focussing on commodity production, and the desire to reduce management complexity. The greater simplicity of these even-aged and monospecific managed forests was seen as the root cause for problems related to their ecological stability. This has triggered the development of alternative silvicultural approaches, initially in Central Europe, which promoted more natural, mixed-species, and structurally diverse forests. However, the initial movements towards a more natural, alternative forest management were not well supported by scientific evidence until the end of the twentieth century. Today, compositionally and structurally diverse forests represent an important element of approaches to deliver a wide range of ecosystem goods and services in the context of sustainable forest management. In addition, diverse forests are being regarded as more resistant, resilient, and adaptable in the face of global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this context, ecosystem functioning refers to ecosystem properties (e.g. compartments or pools and processes or fluxes) that facilitate the provision of ecosystem goods and services.

References

  • Alcorn PJ, Forrester DI, Smith RGB, Thomas DS, James R, Nicotra A, Bauhus J (2013) The influence of site quality on timing of pruning in Eucalyptus pilularis and Eucalyptus cloeziana plantations. Aust For 76:25–36

    Article  Google Scholar 

  • Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37

    Article  Google Scholar 

  • Ashton DH (1976) The development of even-aged stands of Eucalyptus regnans F. Muell. in central Victoria. Aust J Bot 24:397–414

    Article  Google Scholar 

  • Assmann EA (1961) Waldertragskunde. BLV, München Bonn Wien

    Google Scholar 

  • Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For Ecol Manage 254:1–15

    Article  Google Scholar 

  • Bauhus J, Pyttel P (2015) Managed forests. In: Peh KSH, Corlett RT, Bergeron Y (eds) Routledge handbook of forest ecology. Routledge, Oxon, pp 75–90

    Google Scholar 

  • Bauhus J, Schmerbeck J (2010) Silvicultural options to enhance and use forest plantation biodiversity. In: Bauhus J, van der Meer P, Kanninen M (eds) Ecosystem goods and services from plantation forests. Earthscan, London, pp 96–139

    Google Scholar 

  • Bauhus J, Khanna PK, Menden N (2000) Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can J For Res 30:1886–1894

    Article  Google Scholar 

  • Bauhus J, van der Meer P, Kanninen M (2010) Ecosystem goods and services from plantation forests. Earthscan, London, 254 p

    Google Scholar 

  • Bauhus J, Puettmann KJ, Kühne C (2013) Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems? In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, The Earthscan Forest Library, pp 187–213

    Google Scholar 

  • Baumgärtner S (2007) The insurance value of biodiversity in the provision of ecosystem services. Nat Resour Model 20:87–127

    Article  Google Scholar 

  • Biber P, Borges JG, Moshammer R, Barreiro S, Botequim B, Brodrechtová Y, Brukas V, Chirici G, Cordero-Debets R, Corrigan E, Eriksson LO, Favero M, Galev E, Garcia-Gonzalo J, Hengeveld G, Kavaliauskas M, Marchetti M, Marques S, Mozgeris G, Navrátil R, Nieuwenhuis M, Orazio C, Paligorov I, Pettenella D, Sedmák R, Smrecek R, Stanislovaitis A, Tomé M, Trubins R, Tucek J, Vizzarri M, Wallin I, Pretzsch H, Sallnäs O (2015) How sensitive are ecosystem services in European forest landscapes to silvicultural treatment? Forests 6(5):1666–1695

    Article  Google Scholar 

  • Blais JR (1985) The ecology of the eastern spruce budworm: a review and discussion. In: Sanders CJ, Stark RW, Mullins EJ, Murphy J (eds) Recent advances in spruce budworms research. CANUSA Spruce Budworms Research Sympsoium Proceedings. Bangor ME, Sept 1984. Canada Forest Services/USDA Forest Services, Ottawa, ON, pp 49–59

    Google Scholar 

  • Brang P, Spathelf P, Larsen JB et al (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503

    Article  Google Scholar 

  • Bruelheide H, Nadrowski K, Assmann T et al (2013) Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol Evol 5:74–89

    Article  Google Scholar 

  • Burdon RD (2001) Chapter 5. Pinus radiata. In: Last FD (ed) Ecosystems of the world 19 – Tree crop ecosystems. pp 99–161

    Google Scholar 

  • Busing RT, Fujimori T (2002) Dynamics of composition and structure in an old Sequoia sempervirens forest. J Veg Sci 13:785–792

    Google Scholar 

  • Busing RT, White PS (1997) Species diversity and small-scale disturbance in an old-growth temperate forest: a consideration of gap partitioning concepts. Oikos 78:562–568

    Article  Google Scholar 

  • Carnol M, Baeten L, Branquart E et al (2014) Ecosystem services of mixed species forest stands and monocultures: comparing practitioners’ and scientists’ perceptions with formal scientific knowledge. Forestry 87:639–653

    Article  Google Scholar 

  • Clements FE (1936) Nature and structure of the climax. J Ecol 24:252–284

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Allison SD et al (2009) Plant traits and wood fates across the globe—rotted, burned, or consumed? Glob Chang Biol 15:2431–2449

    Article  Google Scholar 

  • Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of trees. Nature 329:326–327

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Evans J, Turnbull M (2004) Plantation forestry in the tropics, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2006) Global Forest Resources Assessment 2005 – Progress towards sustainable forest management. FAO Forestry Paper 147

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2010) Global Forest Resources Assessment 2010 – Main report. FAO Forestry Paper 163

    Google Scholar 

  • Fonseca CR, Ganade G (2001) Species functional redundancy, random extinctions and the stability of ecosystems. J Ecol 89:118–125

    Article  Google Scholar 

  • Forrester DI, Bauhus J (2016) A review of processes behind diversity – productivity relationships in forests. Curr For Rep 2:45–61

    Article  CAS  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manage 233:211–230

    Article  Google Scholar 

  • Gamborg C, Larsen JB (2003) ‘Back to nature’—a sustainable future for forestry? For Ecol Manage 179:559–571

    Article  Google Scholar 

  • Gardiner BA, Quine CP (2000) Management of forests to reduce the risk of abiotic damage – a review with particular reference to the effects of strong winds. For Ecol Manage 135:261–277

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  CAS  PubMed  Google Scholar 

  • Gayer K (1886) Der gemischte Wald – Seine Begründung und Pflege, insbesondere durch Horst- und Gruppenwirtschaft. Paul Parey Verlag, Berlin

    Book  Google Scholar 

  • Gentry AH (1988) Tree species richness of upper Amazonian forests. Proc Natl Acad Sci U S A 85:156–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groot A, Horton BJ (1994) Age and size structure of natural and second-growth peatland Picea mariana stands. Can J For Res 24:225–233

    Article  Google Scholar 

  • Haggar JP, Briscoe CB, Butterfield RP (1998) Native species: a resource for the diversification of forestry production in the lowland humid tropics. For Ecol Manage 106:195–203

    Article  Google Scholar 

  • Halpern CB, Spiess TA (1995) Plant species diversity in natural and managed forests of the Pacific Northwest. Ecol Appl 5:913–934

    Article  Google Scholar 

  • Hansen A, Rotella J (1999) Abiotic factors. In: Hunter ML (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp 161–209

    Chapter  Google Scholar 

  • Hart TB, Hart JA, Murphy PG (1989) Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. Am Nat 133:613–633

    Article  Google Scholar 

  • Hartig GL (1791) Anweisung zur Holzzucht für Förster. Neue Akademische Buchhandlung, Marburg

    Google Scholar 

  • Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manage 155:81–95

    Article  Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190

    Article  CAS  PubMed  Google Scholar 

  • Hemery GE, Clark JR, Aldinger E et al (2010) Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 83:65–81

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hooper DU, Chapin FSI, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecol Monogr 75:3–36

    Article  Google Scholar 

  • Hundeshagen JC (1826) Die Forstabschätzung auf neuen wissenschaftlichen Grundlagen. Laupp, Tübingen

    Google Scholar 

  • Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood–lessons for dead wood management. Silva Fennica 39:289–309

    Article  Google Scholar 

  • Kazmierczak M, Backmann P, Fedriani JM et al (2016) Monodominance in tropical forests: modelling reveals emerging clusters and phase transitions. J R Soc Interface 13(117):20160123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelty MJ (1992) Comparative productivity of monocultures and mixed-species stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests: a Festschrift for David M. Smith. Springer, Netherlands, pp 125–141

    Chapter  Google Scholar 

  • Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For Pathol 36:264–270

    Article  Google Scholar 

  • Latham RL, Ricklefs E (1993) Global patterns of tree species richness in mosit forests: energy-diversity theory does not account for variation in species richness. Oikos 67:325–333

    Article  Google Scholar 

  • Lemmel H (1939) Die Organismusidee in Möllers Dauerwaldgedanken. Springer, Berlin

    Book  Google Scholar 

  • Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436

    Article  Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei X, Schelhaas MJ, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto B, Frizzera L, Balazy R, Oleksyn J, Zawila-Niedzwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares V, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O'Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(6309):aaf8957

    Article  PubMed  CAS  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P (eds) (2002) Biodiversity and ecosystem functioning. Oxford University Press, New York

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Malden

    Google Scholar 

  • Mantel W (1961) Wald und Forst. Wechselbeziehungen zwischen Natur und Wirtschaft, Rowohlt, Reinbek bei Hamburg

    Google Scholar 

  • Masaki T, Suzuki W, Niiyama K et al (1992) Community structure of a species-rich temperate forest, Ogawa Forest Reserve, central Japan. Vegetatio 98:97–111

    Article  Google Scholar 

  • Maser C (1994) Sustainable forestry: philosophy, science, and economics. St. Lucie Press

    Google Scholar 

  • Mason NW, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • McDonald GT, Lane MB (2004) Converging global indicators for sustainable forest management. For Policy Econ 6:63–70

    Article  Google Scholar 

  • McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: Its definition and measurement. For Ecol Manage 218:1–24

    Article  Google Scholar 

  • Messier C, Puettmann KJ, Coates KD (eds) (2013) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, London

    Google Scholar 

  • Molino JF, Sabatier D (2001) Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294:1702–1704

    Article  CAS  PubMed  Google Scholar 

  • Möller A (1922) Der Dauerwaldgedanke – Sein Sinn und seine Bedeutung. Springer, Berlin

    Google Scholar 

  • Monserud RA (1975) Methodology for simulating Wisconsin northern hardwood stand dynamics. Univ Wisconsin-Madison, PhD thesis Abstracts 36, No 11

    Google Scholar 

  • Mosandl R (2009) Geschichte der Wälder in Mitteleuropa im letzten Jahrtausend. In: Herrmann B (ed) Beiträge zum Göttinger Umwelthistorischen Kolloquium 2008 – 2009. Universitätsverlag Göttingen, Göttingen

    Google Scholar 

  • Münker W (1958) Dem Mischwald gehört die Zukunft. Ausschuß zur Rettung des Laubwaldes im Deutschen Heimatbund. Deutscher Heimatverlag, Bielefeld

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–1155

    Article  Google Scholar 

  • Niemelä J (1997) Invertebrates and boreal forest management. Conserv Biol 11:601–610

    Article  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364

    Article  Google Scholar 

  • Osonubi O, Mulongoy K, Awotoye OO et al (1991) Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil 136:131–143

    Article  Google Scholar 

  • Ovington JD (1983) Temperate broad-leaved evergreen forests. Ecosystems of the World 10. Elsevier, Amsterdam

    Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180

    Article  Google Scholar 

  • Pastor J, Mladenoff DJ, Haila Y et al (1996) Biodiversity and ecosystem processes in boreal regions. Scope – Scientific Committee on Problems of the Environment International Council of Scientific Unions 55:33–69

    Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Petchey OL, Hector A, Gaston KJ (2004) How do different measures of functional diversity perform? Ecology 85:847–857

    Article  Google Scholar 

  • Peters R (1997) Beech forests. Geobotany, Vol 24. Kluwer Academic, Dordrecht

    Google Scholar 

  • Pflug A (1892) Die wirtschaftliche erschliessung öder und geringwertiger liegenschaften durch künstliche aufforstungen. Zeitschrift für die gesamte Staatswissenschaft/J Inst Theor Econ:79–122

    Google Scholar 

  • Poulson TL, Platt WJ (1989) Gap light regimes influence canopy tree diversity. Ecology 70:553–555

    Article  Google Scholar 

  • Powers RF (1999) On the sustainable productivity of planted forests. New For 17:263–306

    Article  Google Scholar 

  • Pretzsch H, Biber P, Ďurský J (2002) The single tree based stand simulator SILVA. Construction, application and evaluation. For Ecol Manage 162:3–21

    Article  Google Scholar 

  • Pretzsch H, Block J, Dieler J et al (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67:1–12

    Article  Google Scholar 

  • Pretzsch H, Bielak K, Block J et al (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132:263–280

    Article  Google Scholar 

  • Pretzsch H, Forrester DI, Rötzer T (2015) Representation of species mixing in forest growth models. Ecol Model 313:276–292

    Article  Google Scholar 

  • PROSILVA (2013) PORSILVA Europe – Integrated forest management for resilience and sustainability across 25 countries. http://prosilvaeurope.wordpress.com/. Accessed 10.08.2014

  • Puettmann KJ, Coates KD, Messier C (2009) A critique of silviculture: managing for complexity. Island Press, Washington, DC

    Google Scholar 

  • Puettmann KJ, Wilson SMG, Baker S et al (2015) Silvicultural alternatives to conventional even-aged forest management – what limits global adoption? For Ecosyst 2:8

    Article  Google Scholar 

  • Rametsteiner E, Mayer P (2004) Sustainable forest management and pan: European forest policy. Ecol Bull 51:51–57

    Google Scholar 

  • Reif A, Brucker U, Kratzer R et al (2010) Waldbewirtschaftung in Zeiten des Klimawandels – Synergien und Konfliktpotenziale zwischen Forstwirtschaft und Naturschutz. Naturschutz und Landschaftsplanung 42:261–266

    Google Scholar 

  • Remmert H (1991) The mosaic-cycle concept of ecosystems—an overview. In: Remmert H (ed) The mosaic-cycle concept of ecosystems. Ecol Stud 85:1–21

    Google Scholar 

  • Scherer-Lorenzen M, Körner C, Schulze ED (eds) (2005) Forest diversity and function: temperate and boreal systems. Ecological studies, Vol 176. Springer, Berlin

    Google Scholar 

  • Schuck A, Päivinen R, Hytönen T, Pajari B (2002) Compilation of forestry terms and definitions. European Forest Institute, Internal Report No. 6, p 48

    Google Scholar 

  • Schütz JP (2002) Silvicultural tools to develop irregular and diverse forest structures. Forestry 75:329–337

    Article  Google Scholar 

  • Seymour R, Hunter ML Jr (1999) Principles of ecological forestry. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Shannon C E (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423 and 623–656

    Google Scholar 

  • Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Fine PV (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092-1–1243092-9

    Google Scholar 

  • Thomasius H (1996) Geschichte, Theorie und Praxis des Dauerwaldes. Landesforstverein Sachsen-Anhalt e. V, Straßfurt

    Google Scholar 

  • Tilman D, Reich PB, Knops J et al (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22

    Article  Google Scholar 

  • Verheyen K, Scherer-Lorenzen M (2011) TreeDivNet – a unique platform for ecosystem research in tree diversity experiments worldwide. http://www.treedivnet.ugent.be/index.html. Accessed 10.08.2014

  • Wagner S (2004) Möglichkeiten und Beschränkungen eines funktionsorientierten Waldbaus. Forst und Holz 59:105–111

    Google Scholar 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113

    Article  Google Scholar 

  • Wang X, Wiegand T, Wolf A et al (2011) Spatial patterns of tree species richness in two temperate forests. J Ecol 99:1382–1393

    Article  Google Scholar 

  • Wardle P, Bulfin MJA, Dugdale J (1983) Temperate broad-leaved evergreen forests of New Zealand. In: Ovington JD (ed) Ecosystems of the World 10. Elsevier, Amsterdam

    Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22

    Article  Google Scholar 

  • Wells P, Hickey J (1999) Wet sclerophyll, mixed and swamp forest. In: Reid JB, Hill RS, Brown MJ, Hovenden MJ (eds) Vegetation of Tasmania. Flora of Australia Supplementary Series 8:224–243

    Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Schuster SM (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Genet 7:510–523

    Article  CAS  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Whittaker RH (1977) Evolution of species diversity in land communities. Evol Biol 10:1–67

    Google Scholar 

  • Whittaker RH, Woodwell GM (1969) Structure, production and diversity of the Oak-Pine Forest at Brookhaven, New York. J Ecol 57:155–174

    Article  Google Scholar 

  • Wiedemann E (1923) Zuwachsrückgang und Wuchsstockungen der Fichte in den mittleren und unteren Höhenlagen der sächsischen Staatsforsten. Kommissionsverlag W Laux, Tharandt

    Google Scholar 

  • Wiedemann E (1942) Der gleichaltrige Fichten-Buchen-Mischbestand. Mitteilungen aus Forstwirtschaft und Forstwissenschaft 13

    Google Scholar 

  • Wyatt-Smith J (1987) The management of tropical moist forest for the sustained production of timber: some issues. International Union for Conservation of Nature and Natural Resources (IUCN)

    Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:57–64

    Article  Google Scholar 

  • Yang X, Bauhus J, Both S et al (2013) Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). Eur J For Res 132:593–606

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

  • Zobel BJ, Van Buijtenen JP (1989) Wood variation: its causes and control. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bauhus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Bauhus, J., Forrester, D.I., Pretzsch, H. (2017). Mixed-Species Forests: The Development of a Forest Management Paradigm. In: Pretzsch, H., Forrester, D., Bauhus, J. (eds) Mixed-Species Forests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54553-9_1

Download citation

Publish with us

Policies and ethics