Skip to main content

Mechanisms of Regressive Evolution

  • Chapter
  • First Online:
Evolution in the Dark
  • 911 Accesses

Abstract

In the face of the neodarwinian paradigm of selection as an agent exclusively claimed to explain evolutionary processes in recent days, almost countless efforts have been made to prove that selection plays an important role in rudimentation processes in cave animals. Efforts mostly focus on the eye and very often pleiotropy is looked upon as being responsible. For example, eye reduction is claimed to antagonistically drive the improvement of taste or the lateral line sense by pleiotropy. However, this could not be confirmed by crossing analysis or by quantitative trait loci mapping. Energy savings have been suggested as another selection factor. This hypothesis implies that all cave species would have to suffer from food limitation. This attempt ignores the fact that the majority of tropical caves, and even some subtropical ones, abound in energy supply. Nonetheless, the traits, having become functionless in the respective cave species occurring in these habitats, regress. Thus, energy limitation is not able to explain regressive evolution of biologically functionless traits in general, or in particular that of the eye in cave species. In fact, independent inheritance of traits suggests that Astyanax cave fish are subjected to mosaic evolution.

Besides, selection variability plays a central role in Darwin’s concept of evolution. Even in the 1930s, the German evolutionary geneticist Curt Kosswig recognized the importance of the variability exhibited by biologically functionless regressive traits for the interpretation of regressive evolution. According to him, in such traits high phenotypic variability arises and is continuously exhibited for a longer time because a biological function no longer exists. He proposed that this variability was due to the absence of stabilizing selection, because regressive mutations are no longer eliminated and traits become reduced over time merely by their accumulation. Thus, variability and loss are correlated. This so-called “Neutral Mutation Theory” is in accordance with Nei’s “Neutral Theory of Molecular Evolution” which applies to molecular evolution. However, Darwin’s loss without selection is one of two sides of the same coin, the other being “Darwin’s gain”, in which variability is the basis of constructive evolution. However, usually variability does not exhibit an extent as conspicuous as in the case of functionless cave animal traits. There are only a few examples in which variability, for a relatively short period of time, becomes obvious during evolution. This occurs during the initial phase of processes of adaptive radiation, as can be observed in a series of fish species flocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aspiras AC, Rohner N, Martineau B et al (2015) Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci U S A 112:9668–9673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow GW (2000) The cichlid fishes. Nature’s grand experiment in evolution. Perseus Publishing, Cambridge

    Google Scholar 

  • Barr TC (1968) Cave ecology and the evolution of troglobites. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Plenum Press, New York, pp 35–101

    Chapter  Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1955–1058

    Article  CAS  Google Scholar 

  • Beleza JC, Santos AM, McEvoy B et al (2012) The timing of pigmentation lightening in Europeans. Mol Biol Evol 30(1):24–35. doi:10.1093/molbev/mss207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besharse JC, Brandon RA (1974) Effects of continuous light and darkness on the eyes of the troglobitic salamander Typhlotriton spelaeus. J Morphol 149:527–546

    Article  Google Scholar 

  • Bibliowicz J, Alié A, Père S et al (2013) Differences in chemosensory response between eyed and eyeless Astyanax mexicanus of the Rio Subterráneo cave. EvoDevo 4:25–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilandžija H, Parkhurst A, Jeffery WR (2013) A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One 8:1–14

    Article  Google Scholar 

  • Borowsky RL (2015) Regressive evolution: testing hypotheses of selection and drift. In: Keene AC, Yoshizawa M, McGaugh SE (eds) Biologiy and evolution of the Mexican cavefish. Elsevier, Amsterdam, pp 93–107

    Google Scholar 

  • Borowsky RL, Cohen D (2013) Genomic consequences of ecological speciation in Astyanax cavefish. PLoS One 8(11):e79903. doi:10.1371/journal.pone.0079903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calderoni L, Rota-Stabelli O, Frigato E et al (2016) Relaxed selective constraints drove functional modifications in peripheral photoreception of the cavefish P. andruzzii and provide insight into the time of cave colonization. Heredity 117:383–392

    Article  CAS  PubMed  Google Scholar 

  • Covich A, Stuiver M (1974) Changes in oxygen 18 as a measure of long-term fluctuations in tropical lake levels and molluscan populations. Limnol Oceanogr 19:682–691

    Article  Google Scholar 

  • Crish SD, Dengler-Crish C, Catania KC (2006) Central visual system of the naked mole-rat (Heterocephalus glaber). Anat Rec A Discov Mol Cell Evol Biol 288(2):205–212

    Article  PubMed  Google Scholar 

  • Culver DC (1987) Eye morphometrics of cave and spring populations of Gammarus minus (Amphipoda: Gammaridae). J Crustac Biol 7:136–147

    Article  Google Scholar 

  • Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Davies WL (2011) Adaptive gene loss in vertebrates: photosensitivity as a model case. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0022890

    Google Scholar 

  • Deharveng L, Bedos A (2000) The cave fauna of Southeast Asia. Origin, evolution and ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 603–632

    Google Scholar 

  • Dillman CB, Bergstrom DE, Noltie DB et al (2010) Regressive progression, progressive regression or neither? Phylogeny and evolution of the Percopsiformes (Teleostei, Paracanthopterygii). Zool Scr 40:45–60

    Article  Google Scholar 

  • Dollo L (1893) Les lois de l’évolution. Bull Soc Belge Geol Pal Hydr VII:164–166

    Google Scholar 

  • Duboué ER, Keene AC, Borowsky RL (2011) Evolutionary convergence on sleep loss in cavefish populations. Curr Biol 21:671–676

    Article  PubMed  CAS  Google Scholar 

  • Eigenmann CH (1909) Cave vertebrates of America. Carnegie Inst Wash Publ 104:1–241

    Google Scholar 

  • Elipot Y, Hinaux H, Callebert J et al (2013) Evolutionary shift from fighting to foraging in blind cavefish through changes in the serotonin network. Curr Biol 23:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ellis R (1996) Deep Atlantic: life, death, and exploration in the abyss. The Lions Press, New York

    Google Scholar 

  • Emerling CA, Springer MS (2014) Eyes underground: regression of visual protein networks in subterranean mammals. Mol Phylogenet Evol 78:260–270

    Article  CAS  PubMed  Google Scholar 

  • Espinasa L, Borowsky RL (2000) Eyed cave fish in a karst window. J Cave Karst Stud 62:180–183

    Google Scholar 

  • Fernandes CS, Batalha MA, Bichuette ME (2016) Does the cave environment reduce functional diversity? PLoS One 11(3):e0151958. doi:10.1371/journal.pone.0151958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freese E, Yoshida A (1965) The role of mutations in evolution. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 341–355

    Chapter  Google Scholar 

  • Gnaspini P, Trajano E (2000) Guano communities in tropical caves. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 251–268

    Google Scholar 

  • Gross JM, Perkins BD (2008) Zebrafish mutants as models for congenital ocular disorders in humans. Mol Reprod Dev 75:547–555

    Article  CAS  PubMed  Google Scholar 

  • Gross JB, Borowsky RL, Tabin CJ (2009) A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cave fish, Astyanax mexicanus. PLoS Genet 5:1–14

    Article  CAS  Google Scholar 

  • Hausberg C (1995) Das Aggressionsverhalten von Astyanax fasciatus (Cuvier 1819; Characidae, Teleostei): Ontogenie, Genetik und Evolution bei der epigäischen und hypogäischen Form. Dissertation, University of Hamburg

    Google Scholar 

  • Hinaux H, Poulain J, Da Silva C et al (2013) De novo sequencing of Astyanax mexicanus surface fish and Pachón cavefish transcriptomes reveals enrichment of mutations in cavefish putative eye genes. PLoS One 8(1):e53553. doi:10.1371/journal.pone.0053553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinaux H, Blin M, Fumey J et al (2015) Lens defects in Astyanax mexicanus cavefish: evolution of crystallins and a role for alphaA-crystallin. Dev Neurobiol 75(5):505–521

    Article  CAS  PubMed  Google Scholar 

  • Hinaux H, Devos L, Blin M et al (2016) Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation. Development 143:4521–4532. doi:10.1242/dev.141291

    Article  CAS  PubMed  Google Scholar 

  • Hoch H (2000) Acoustic communication in darkness. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 211–220

    Google Scholar 

  • Hodell DA, Curtis JH, Brenner M (1995) Possible role of climate in the collapse of classic maya civilization. Nature 375:391–394

    Article  CAS  Google Scholar 

  • Hodell DA, Brenner M, Curtis JH et al (2001) Solar forcing of drought frequency in the Maya lowlands. Science 292:1367–1370

    Article  CAS  PubMed  Google Scholar 

  • Hoffman S, Hausberg C (1993) The aggressive behavior of the Micos cave population (Astyanax fasciatus, Characidae, Teleostei) after selection for functional eyes in comparison to an epigean one. Mémoires de Biospéléologie 20:101–103

    Google Scholar 

  • Horstkotte J, Strecker U (2005) Trophic differentiation in the phylogenetically young Cyprinodon species flock (Cyprinodontidae, Teleostei) from Laguna Chichancanab (Mexico). Biol J Linn Soc 85:125–134

    Article  Google Scholar 

  • Huber R, Staaden MJ van, Kaufman LS et al (1997) Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav Evol 50:167–182

    Google Scholar 

  • Humphries JM (1984) Cyprinodon verecundus n. sp., a fifth species of pupfish from Laguna Chichancanab. Copeia 1984:58–68

    Article  Google Scholar 

  • Humphries JM, Miller RR (1981) A remarkable species flock of Cyprinodon from Lake Chichancanab, Yukatan, Mexico. Copeia 1981:52–64

    Article  Google Scholar 

  • Hüppop K (1989) Genetic analysis of oxygen consumption rate in cave and surface fish of Astyanax fasciatus (Characidae, Pisces). Further support for the neutral mutation theory. Mémoires de Biospéléologie 16:163–168

    Google Scholar 

  • Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 159–188

    Google Scholar 

  • Hüppop K (2012) Adaptation to low food. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Elsevier, Amsterdam, pp 1–9

    Chapter  Google Scholar 

  • Hüppop K, Wilkens H (1991) Bigger eggs in subterranean Astyanax fasciatus. Z Zool Syst Evol 29:280–288

    Article  Google Scholar 

  • Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96:185–196

    Article  CAS  PubMed  Google Scholar 

  • Jeffery WR, Ma L, Parkhurst A et al (2015) Pigment regression and albinism in Astyanax cavefish. In: Keene AC, Yoshizawa M, McGaugh SE (eds) Biology and evolution of the Mexican cavefish. Elsevier, Amsterdam, pp 155–171

    Google Scholar 

  • Jónasson PM (1992) The ecosystem of Thingvallavatn: a synthesis. Oikos 64:405–434

    Article  Google Scholar 

  • Jónasson PM (1993) Continental rifting-energy pathways of two contrasting rift lakes. Verhandlungen des Internationalen Vereins für Limnologie 25:1–14

    Google Scholar 

  • Jónasson PM (1998) Continental rifting and habitat formation: Arena for resource polymorphism in Arctic charr. Ambio 27:162–169

    Google Scholar 

  • Juberthie-Jupeau L (1976) Sur le système neurosécréteur du pédoncule oculaire d’un décapode souterrain microphthalme Typhlatya garciai Chace. Ann Spéléol 31:107–114

    Google Scholar 

  • Katz PS (2011) Neural mechanisms underlying the evolvability of behavior. Philos Trans R Soc Lond B Biol Sci 366:2086–2090

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz PS, Lillvis JL (2014) Reconciling the deep homology of neuromodulation with the evolution of behavior. Curr Opin Neurobiol 29:39–47. doi:10.1016/j.conb.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  • Kim B-M, Kang S, Ahn DH et al (2017) First insights into the subterranean crustacean Bathynellacea transcriptome: transcriptionally reduced opsin repertoire and evidence of conserved homeostasis regulatory mechanisms. PLoS One 12(1):e0170424. doi:10.1371/journal

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  CAS  PubMed  Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–797

    Article  CAS  PubMed  Google Scholar 

  • Kodric-Brown A, Strecker U (2001) Responses of Cyprinodon maya and C. labiosus females to visual and olfactory cues of conspecific and heterospecific males. Biol J Linn Soc 74:541–548

    Article  Google Scholar 

  • Konec M, Delić T, Trontelj P (2016) DNA barcoding sheds light on hidden subterranean boundary between Adriatic and Danubian drainage basins. Ecohydrology 9:1304–1312. doi:10.1002/eco.1727

    Article  Google Scholar 

  • Kosswig C (1935) Die Evolution von “Anpassungs”-Merkmalen bei Höhlentieren in genetischer Betrachtung. Zool Anz 112:148–155

    Google Scholar 

  • Kosswig C (1949) Phänomene der regressiven Evolution im Lichte der Genetik. Communications de la Faculté des Sciences de l’Université d’Ankara 8:110–150

    Google Scholar 

  • Kosswig C (1960a) Darwin und die degenerative evolution. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins Hamburg NF 4:21–42

    Google Scholar 

  • Kosswig C (1960b) Zur Phylogenese sogenannter Anpassungsmerkmale bei Höhlentieren. Int Rev Ges Hydrobiol 45:493–512

    Google Scholar 

  • Kosswig C (1976) Génétique et l‘évolution regressive - Mécanismes de la rudimentation des organes chez les embryons de vertébrés. Colloq Int CNRSN 266:19–29

    Google Scholar 

  • Kosswig C, Kosswig L (1940) Die Variabilität bei Asellus aquaticus, unter besonderer Berücksichtigung der Variabilität in isolierten unter- und oberirdischen Populationen. Révue de la Faculté des Sciences Istanbul 5:1–55

    Google Scholar 

  • Kowalko JE, Rohner N, Linden TA et al (2013a) Convergence in feeding posture occurs through different loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci U S A 110:16933–16938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalko JE, Rohner N, Rompani SB et al (2013b) Loss of schooling behavior in cavefish through sight-independent and sight-dependent mechanisms. Curr Biol 23:1874–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan J, Rohner N (2017) Cavefish and the basis for eye loss. Philos Trans R Soc B 372(1713):20150487. doi:10.1098/rstb.2015.0487

    Article  Google Scholar 

  • Langecker TG (1989) Studies on the light reaction of epigean and cave populations of Astyanax fasciatus (Characidae, Pisces). Mem Biospeleol 16:169–176

    Google Scholar 

  • Langecker TG (1993) Genetic analysis of the dorsal light reaction in epigean and cave-dwelling Astynnax fasciatus (Teleostei, Characidae). Ethol Ecol Evol 3:357–364

    Article  Google Scholar 

  • Langecker TG (2000) The effects of continuous darkness on cave ecology and cavernicolous evolution. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 135–157

    Google Scholar 

  • Langecker TG, Neumann B, Hausberg C et al (1995) Evolution of the optical releasers for aggressive behavior in cave-dwelling Astyanax fasciatus (Teleostei, Characidae). Behav Process 34:161–168

    Article  CAS  Google Scholar 

  • Langecker TG, Wilkens H, Parzefall J (1996) Studies of the trophic structure of an energy-rich Mexican cave (Cueva de las Sardinas) containing sulfurous water. Mém Biospéléol 23:121–125

    Google Scholar 

  • Lao O, de Gruijter JM, Duijn K v et al (2007) Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann Hum Genet 71:354–369

    Article  CAS  PubMed  Google Scholar 

  • Menuet A, Alunni A, Joly JS et al (2007) Expanded expression of Sonic Hedgehog in Astyanax cavefish: multiple consequences on forebrain development and evolution. Development 134:845–855. doi:10.1242/dev.02780

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB, Juberthie-Jupeau L (1987) An electron microscope study of the eye of the cave mysid Heteromysoides cotti from the island of Lanzarote (Canary Islands). Stygologia 3:24–33

    Google Scholar 

  • Mitchell RW, Russell WH, Elliott WR (1977) Mexican eyeless characin fishes, genus Astyanax: environment, distribution, and evolution. Special publications of the Museum Texas Tech University 12:1–89

    Google Scholar 

  • Moran D, Softley R, Warrant EJ (2015) The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci Adv 1(8):e1500363. doi:10.1126/sciadv.1500363

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller HJ (1949) The Darwinian and modern conceptions of natural selection. Proc Am Philos Soc 93:459–470

    CAS  PubMed  Google Scholar 

  • Nei M (2013) Mutation-driven evolution. Oxford University Press, Oxford

    Google Scholar 

  • Nei M, Suzuki Y, Nozawa M (2010) The neutral theory of molecular evolution in the genomic era. Annu Rev Genomics Hum Genet 11:265–289

    Article  CAS  PubMed  Google Scholar 

  • Niemiller ML, Fitzpatrick BM, Shah P et al (2012) Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution 67:732–748

    Article  PubMed  CAS  Google Scholar 

  • Niven JE, Anderson JC, Laughlin SB (2007) Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol 5:828–840

    Article  CAS  Google Scholar 

  • Orr HA (1998) Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait loci. Genetics 149:2099–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios M, Voelker G, Rodriguez LA et al (2016) Phylogenetic analyses of the subgenus Mollienesia (Poecilia, Poeciliidae, Teleostei) reveal taxonomic inconsistencies, cryptic biodiversity, and spatio-temporal aspects of diversification in Middle America. Mol Phylogenet Evol 103:230–244

    Article  PubMed  Google Scholar 

  • Parzefall J (1993) Schooling behaviour in population-hybrids of Astyanax fasciatus and Poecilia mexicana (Pisces, Characidae and Poeciliidae). In: Schröder JH, Bauer J (eds) Trends in ichthyology: an international perspective. Blackwell Scientific, Oxford, pp 297–303

    Google Scholar 

  • Parzefall J (2001) A review of morphological and behavioural changes in the cave molly, Poecilia mexicana, from Tabasco, Mexico. Environ Biol Fishes 62:263–275

    Article  Google Scholar 

  • Pennisi E (2016) Blind cave fish may provide insights into human health. Science 352(6293):1502–1503. doi:10.1126/science.352.6293.1502

    Article  CAS  PubMed  Google Scholar 

  • Peters N, Peters G (1968) Zur genetischen interpretation morphologischer Gesetzmäßigkeiten der degenerativen evolution. Zeitschrift Morphologie der Tiere 62:211–244

    Article  Google Scholar 

  • Peters N, Peters G (1973) Genetic problems in the regressive evolution of cavernicolous fish. In: Schröder JH (ed) Genetics and mutagenesis of fish. Springer, Berlin, pp 187–201

    Chapter  Google Scholar 

  • Peters N, Scholl A, Wilkens H (1975) Der Micos-Fisch, Höhlenfisch in statu nascendi oder Bastard ? Ein Beitrag zur Evolution der Höhlentiere. J Zool Syst Evol Res 13:110–124

    Article  Google Scholar 

  • Peters N, Schacht V, Schmidt W et al (1993) Gehirnproportionen und Ausprägungsgrad der Sinnesorgane von Astyanax mexicanus (Pisces, Characinidae). Z Zool Syst Evol 31:144–159

    Google Scholar 

  • Poulson TL, White WB (1969) The cave environment: limestone caves provide unique natural laboratc for studying biological and geological processes. Science 165:971–981

    Article  CAS  PubMed  Google Scholar 

  • Protas M, Conrad M, Gross JB et al (2007) Regressive evolution in the Mexican Cave Tetra, Astyanax mexicanus. Curr Biol 17:452–454. doi:10.1016/j.cub.2007.01.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Protas ME, Trontelj P, Patela NH (2011) Genetic basis of eye and pigment loss in the cave crustacean, Asellus aquaticus. Proc Natl Acad Sci U S A 108:5702–5707. doi:10.1073/pnas.1013850108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rétaux S, Casane D (2013) Evolution of eye development in the darkness of caves: adaptation, drift, or both? EvoDevo 4(1):1–12

    Article  Google Scholar 

  • Rétaux S, Pottin K, Alunni A (2008) Shh and forebrain evolution in the blind cavefish Astyanax mexicanus. Biol Cell 100:139–147

    Article  PubMed  Google Scholar 

  • Rodrigues FR (2013) Comparison of brain and cranial nerve morphology between eyed surface fish and blind cave fish of the species Astyanax mexicanus. Dissertation, Universidade de Lisboa

    Google Scholar 

  • Rohner N, Jarosz DF, Kowalko JE et al (2013) Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 342:1372–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schemmel C (1967) Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen. Zeitschrift Morphologie der Tiere 61:255–316

    Article  Google Scholar 

  • Schemmel C (1980) Studies on the genetics of feeding behavior in the cave fish Astyanax mexicanus f. Anopthichthys. An example of apparent monofactorial inheritance by polygenes. Z Tierpsychol 53:9–22

    Article  CAS  PubMed  Google Scholar 

  • Schluter D (1996) Ecological speciation in postglacial fishes. Philos Trans Biol Sci 351:807–814

    Article  Google Scholar 

  • Schön I, Martens K (2004) Adaptive, pre-adaptive and non-adaptive components of radiations in ancient lakes: a review. Organ Divers Evol 4:137–156

    Article  Google Scholar 

  • Stevenson MM (1992) Food habits within the Laguna Chichancanab Cyprinodon (Pisces: Cyprinodontidae) species flock. Southwest Nat 37:337–343

    Article  Google Scholar 

  • Strecker U (1996) Molekulargenetische und ethologische Untersuchungen zur Speziation eines Artenschwarmes der Gattung Cyprinodon (Cyprinodontidae, Teleostei). Universität, Hamburg

    Google Scholar 

  • Strecker U (2002) Cyprinodon esconditus, a new pupfish from Laguna Chichancanab, Yucatan, Mexico (Cyprinodontidae). Cybium 26:301–307

    Google Scholar 

  • Strecker U (2006) Genetic differentiation and reproductive isolation in a Cyprinodon fish species flock from Laguna Chichancanab, Mexico. Mol Phylogenet Evol 39:865–872

    Article  CAS  PubMed  Google Scholar 

  • Strecker U, Kodric-Brown A (2000) Mating preferences in a species flock of Mexican pupfishes (Cyprinodon, Teleostei). Biol J Linn Soc 71:677–687

    Article  Google Scholar 

  • Strecker U, Meyer CG, Sturmbauer C et al (1996) Genetic divergence and speciation in an extremely young species flock in Mexico formed by the genus Cyprinodon (Cyprinodontidae, Teleostei). Mol Phylogenet Evol 6:143–149

    Article  CAS  PubMed  Google Scholar 

  • Strecker U, Hausdorf B, Wilkens H (2012) Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico. Mol Phylogenet Evol 62:62–70

    Article  PubMed  Google Scholar 

  • Strickler AG, Yamamoto Y, Jeffery WB (2007) The lens controls cell survival in the retina: evidence from the blind cavefish Astyanax. Dev Biol 311:512–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgeon J, Estoup A, Bernatchez L (1999) Species flock in the North American Great Lakes: molecular ecology of Lake Nipigon ciscoes (Teleostei, Coregonidae: Coregonus). Evolution 53:1857–1871

    Article  CAS  Google Scholar 

  • Verovnik R, Prevorčnik S, Jugovic J (2009) Description of a neotype for Asellus aquaticus Linné, 1758 (Crustacea: Isopoda: Asellidae), with description of a new subterranean Asellus species from Europe. Zool Anz - J Comp Zool 248(2):101–118

    Article  Google Scholar 

  • Villwock W (1986) Speciation and adaptive radiation in Andean Orestias fishes. In: Vuilleumier F, Monasterio MM (eds) High altitude tropical biogeography. University Press, Oxford, pp 387–403

    Google Scholar 

  • Wilkens H (1971) Genetic interpretation of regressive evolutionary processes: studies on hybrid eyes of two Astyanax cave populations (Characidae, Pisces). Evolution 25:530–544

    Article  Google Scholar 

  • Wilkens H (1976) Genotypic and phenotypic variability in cave animals. Studies on a phylogenetically young cave population of Astyanax mexicanus (Fillippi). Annales de Spéléologie 3:137–148

    Google Scholar 

  • Wilkens H (1988) Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Support for the Neutral Mutation Theory. In: Hecht MK, Wallace B (eds) Evolutionary biology, vol 23. Plenum, New York, pp 271–367

    Chapter  Google Scholar 

  • Wilkens H (2001) Convergent adaptations to cave life in the Rhamdia laticauda catfish group (Pimelodidae, Teleostei). Environ Biol Fishes 62:251–261

    Article  Google Scholar 

  • Wilkens H (2010) Genes, modules and the evolution of cave fish. Heredity 105:413–422

    Article  CAS  PubMed  Google Scholar 

  • Wilkens H (2016) Genetics and hybridization in surface and cave Astyanax (Teleostei): a comparison of regressive and constructive traits. Biol J Linn Soc 118:911–928

    Article  Google Scholar 

  • Wilkens H, Strecker U (2003) Convergent evolution of the cave fish Astyanax (Characidae, Teleostei): genetic evidence from reduced eye size and pigmentation. Biol J Linn Soc 80:545–554

    Article  Google Scholar 

  • Wilkens H, Peters N, Schemmel C (1979) Gesetzmäßigkeiten der regressiven Evolution. Verh Dtsch Zool Ges 1979:123–140

    Google Scholar 

  • Wilkens H, Strecker U, Yager J (1989) Eye reduction and phylogenetic age in ophidiiform cave fish. Z Zool Syst Evol 27:126–134

    Article  Google Scholar 

  • Yamamoto Y, Stock DW, Jeffery WR (2004) Hedgehog signalling controls eye degeneration in blind cavefish. Nature 431:844–847

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Byerly MS, Jackman WR et al (2009) Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev Biol 330:200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X-L, Tornquist K, Dowling JE (1988a) Modulation of cone horizontal cell activity in the teleost fish retina. I. Effects of prolonged darkness and background illumination on light responsiveness. J Neurosci 8:2259–2268

    CAS  PubMed  Google Scholar 

  • Yang X-L, Tornquist K, Dowling JE (1988b) Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexifoem cells and dopamine in regulating light responsiveness. J Neurosci 8:2269–2278

    CAS  PubMed  Google Scholar 

  • Yoshizawa M, Yamamoto Y, O’Quin KE et al (2012) Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol 10:108–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshizawa M, Robinson BG, Duboué ER (2015) Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biol 13:15–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeutzius I, Probst W, Rahmann H (1984) Influence of dark-rearing on the ontogenetic development of Sarotherodon mossambicus (Cichlidae, Teleostei): II. Effects on allometric growth relations and differentiation of the optic tectum. Exp Biol 43:87–96

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Wilkens, H., Strecker, U. (2017). Mechanisms of Regressive Evolution. In: Evolution in the Dark. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54512-6_7

Download citation

Publish with us

Policies and ethics