Skip to main content

Surface and Cave Populations of Mexican Astyanax

  • Chapter
  • First Online:
Book cover Evolution in the Dark

Abstract

The Neotropic large-eyed and well-pigmented diurnal characid fish Astyanax has developed a series of cave populations in Northeastern Mexico. These divide morphologically into a group of strongly eye- and pigment-reduced (SEP) cave populations and another one characterized by variable eye size and pigmentation (VEP cave populations). Molecular and biogeographic data imply that they derive from the Neotropic Astyanax surface fish, which were able to invade North America up to the Rio Grande drainage after the closure of the Central American land bridge. Its recent distributional pattern is strongly influenced by Pleistocene climatic changes and is characterized by regional extinction and recolonization from the warmer south and/or survival in climatically buffered refuges. An example of this are the SEP cave fish populations, which according to cytochrome b analysis do not cluster with the surface fish from neighboring rivers and creeks but with fish from a remote location about 500 km away in the Central Mexican Plateau. In line with this, they do not group with either the VEP cave fish or with surface fish from the cave area, and based on microsatellites and SNP studies, they exhibit relation to populations from southern Mexico and Belize. The SEP cave fish and some relic surface fish populations from isolated locations all over Mexico derive from the oldest invasion. In contrast, based on cytochrome b studies, the VEP cave populations cluster with the recent surface fish from the cave area, which is widespread in Northern Mexico. The VEP cave populations derive from a more recent invasion of surface fish into Northern Mexico. In particular, the differing degree of eye reduction between SEP and VEP cave fish reflects the different times of cave entry. Cave colonization in VEP and SEP cave populations took place in parallel and resulted in multiple convergent evolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avise JC, Selander RK (1972) Genetics of cave-dwelling fishes of the genus Astyanax. Evolution 26:1–19

    Article  Google Scholar 

  • Bermingham E, Martin AP (1998) Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol 7:499

    Article  CAS  PubMed  Google Scholar 

  • Bilandžija H, Parkhurst A, Jeffery WR (2013) A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One 8:1–14

    Google Scholar 

  • Bradic M, Beerli P, García-de León F et al (2012) Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol Biol 12:1–16

    Article  Google Scholar 

  • Bussing WA (1985) Patterns of distribution of the Central American Ichthyofauna. In: Stehli FG, Webb SD (eds) The great American biotic interchange, vol 4. Plenum Press, New York, pp 453–473

    Chapter  Google Scholar 

  • Caccone A, Allegrucci G, Cesaroni D et al (2000) Genetic variability and divergence between cave dwelling populations of Typhlocirolana (Crustacea, Isopoda) from Majorca and Sicily. Biochem Syst Ecol 14:215–221

    Article  Google Scholar 

  • Chakraborthy R, Nei M (1974) Dynamics of gene differentiation between incompletely isolated populations of unequal sizes. Theor Popul Biol 5:460–469

    Article  Google Scholar 

  • Coghill LM, Hulsey CD, Chaves-Campos J et al (2014) Next generation phylogeography of cave and surface Astyanax mexicanus. Mol Phylogenet Evol 79:368–374

    Article  PubMed  Google Scholar 

  • Culver CD (1982) Cave life. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Culver CD, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, New York

    Google Scholar 

  • Culver DC, Wilkens H (2000) Critical review of the relevant theories of the evolution of subterranean animals. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 381–398

    Google Scholar 

  • Culver CD, Kane TC, Fong DW (1995) Adaptation and natural selection in caves. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Dowling TE, Martasian DP, Jeffery WR (2002) Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus. Mol Biol Evol 19:446–455

    Article  CAS  PubMed  Google Scholar 

  • Eigenmann CH (1917) The American Characidae (Part I). Mem Mus Comp Zool 43:1–102

    Google Scholar 

  • Elliott RE (2015a) Cave biodiversity and ecology of the Sierra de El Abra region. In: Keene AC, Yoshizawa M, McGaugh SE (eds) Biology and evolution of the Mexican cavefish. Elsevier, Amsterdam, pp 59–75

    Google Scholar 

  • Elliott RE (2015b) Cave exploration and mapping in the Sierra de El Abra region. In: Keene AC, Yoshizawa M, McGaugh SE (eds) Biology and evolution of the Mexican cavefish. Elsevier, Amsterdam, pp 9–39

    Google Scholar 

  • Espinasa L, Borowsky RL (2001) Origins and relationship of the blind Mexican tetra, Astyanax fasciatus, in the Sierra de El Abra. Environ Biol Fishes 62:233–237

    Article  Google Scholar 

  • Espinasa l, Espinasa M (2015) Hydrogeology of caves in the Sierra de El Abra Region. In: Keene AC, Yoshizawa M, McGaugh SE (eds) Biology and evolution of the Mexican cavefish. Elsevier, Amsterdam, pp 41–57

    Google Scholar 

  • Espinasa L, Rivas-Manzano P, Pérez HE (2001) A new blind cave fish population of genus Astyanax: geography, morphology and behaviour. Environ Biol Fishes 62:339–344

    Article  Google Scholar 

  • Géry J (1977) Characoids of the world. TFH Publications, Neptune City

    Google Scholar 

  • Gross JB (2012) The complex origin of Astyanax cavefish. BMC Evol Biol 12:1–12

    Article  Google Scholar 

  • Gross JM, Wilkens H (2013) Albinism in phylogenetically and geographically distinct populations of Astyanax cavefish arises through the same loss-of function Oca2 allele. Heredity 111:122–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross JB, Borowsky RL, Tabin CJ (2009) A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cave fish, Astyanax mexicanus. PLoS Genet 5:1–14

    Article  Google Scholar 

  • Hausdorf B, Wilkens H, Strecker U (2011) Population genetic patterns revealed by microsatellite data challenge the mitochondrial DNA based taxonomy of Astyanax in Mexico (Characidae, Teleostei). Mol Phylogenet Evol 60:89–97

    Article  PubMed  Google Scholar 

  • Hendrickson DA, Krejca JK, Rodríguez Martinez JM (2001) Mexican blindcats genus Prietella (Siluriformes: Ictaluridae): an overview of recent explorations. Environ Biol Fishes 62:315–337

    Article  Google Scholar 

  • Hinaux H, Poulain J, Da Silva C et al (2013) De novo sequencing of Astyanax mexicanus surface fish and Pachón cavefish transcriptomes reveals enrichment of mutations in cavefish putative eye genes. PLoS One 8(1):e53553. doi:10.1371/journal.pone.0053553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbs CL, Innes WT (1936) The first known blind fish of the family Characidae: a new genus from Mexico. Occasional Papers of the Museum of Zoology, vol 342. University of Michigan Press, Ann Arbor, pp 1–7

    Google Scholar 

  • Juberthie C (2000) Generalities and the diversity of the karstic and pseudokarstic hypogean habitats in the world. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, Vol 30. Elsevier, Oxford, pp 17–39

    Google Scholar 

  • Kane TC, Culver DC, Jones RT (1992) Genetic structure of morphologically differentiated populations of the amphipod Gammarus minus. Evolution 46:272–278

    Article  Google Scholar 

  • Kosswig C (1965) Génétique et l’évolution régressive. Rév Quest Sci 136:227–257

    Google Scholar 

  • Martin AP, Bermingham E (2000) Regional endemism and cryptic species revealed by molecular and morphological analysis of a widespread species of Neotropical catfish. Proc R Soc Lond B 267:1135–1141

    Article  CAS  Google Scholar 

  • Miller RR, Smith ML (1986) Origin and geography of the fishes of Central Mexico. In: Hocutt C, Wiley EO (eds) The zoogeography of North American freshwater fishes. Wiley, New York, pp 487–507

    Google Scholar 

  • Mitchell RW, Russell WH, Elliott WR (1977) Mexican eyeless characin fishes, genus Astyanax: environment, distribution, and evolution. Special publications of the Museum Texas Tech University, 12. Texas Tech Press, Lubbock, pp 1–89

    Google Scholar 

  • Myers GS (1966) Derivation of the freshwater fish fauna of Central America. Copeia 1966:766–772

    Article  Google Scholar 

  • Ornelas-García CP, Domínguez-Domínguez O, Doadrio I (2008) Evolutionary history of the fish genus Astyanax Baird and Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. BMC Evol Biol 8:1–17

    Article  Google Scholar 

  • Ornelas-García CP, Bastir M, Doadrio I (2014) Morphometric variation between two morphotypes within the Astyanax Baird and Girard, 1854 (Actinopterygii: Characidae) genus, from a Mexican tropical lake. J Morph 275:721–731

    Google Scholar 

  • Peters N, Scholl A, Wilkens H (1975) Der Micos-Fisch, Höhlenfisch in statu nascendi oder Bastard ? Ein Beitrag zur Evolution der Höhlentiere. J Zool Syst Evol Res 13:110–124

    Article  Google Scholar 

  • Picq S, Alda F, Krahe R et al (2014) Miocene and Pliocene colonization of the Central American Isthmus by the weakly electric fish Brachyhypopomus occidentalis (Hypopomidae, Gymnotiformes). J Biogeogr 41(8):1520–1532. doi:10.1111/jbi.12309

    Article  Google Scholar 

  • Perdices A, Bermingham E, Montilla A et al (2002) Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. Mol Phylogenet Evol 25:172–189

    Article  CAS  PubMed  Google Scholar 

  • Protas ME, Conrad M, Gross JB et al (2007) Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Curr Biol 17:452–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves RG, Bermingham E (2006) Colonization, population expansion, and lineage turnover: phylogeography of Mesoamerican characiform fish. Biol J Linn Soc 88:235–255

    Article  Google Scholar 

  • Reis RE, Kullander SO, Ferraris CJ Jr (2003) Checklist of the freshwater fishes of South and Central America. Edipucrs, Porto Alegre

    Google Scholar 

  • Schmitter-Soto J-J (2016) A phylogeny of Astyanax (Characiformes: Characidae) in Central and North America. Zootaxa 4109(2):101–130. doi:10.11646/zootaxa.4109.2.1

    Article  PubMed  Google Scholar 

  • Stahl A, Gross JB (2015) Alterations in Mc1r gene expression are associated with regressive pigmentation in Astyanax cavefish. Dev Genes Evol 225:367–375. doi:10.1007/s00427-015-0517-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien CA, Morton B, Dabrowska A et al (2001) Genetic diversity and evolutionary relationships of the troglodytic ‘living fossil’ Congeria kusceri (Bivalvia: Dreissenidae). Mol Ecol 10:1873–1879

    Article  CAS  PubMed  Google Scholar 

  • Strecker U, Bernatchez L, Wilkens H (2003) Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Mol Ecol 12:699–710

    Article  CAS  PubMed  Google Scholar 

  • Strecker U, Faúndez VH, Wilkens H (2004) Phylogeography of surface and cave Astyanax (Teleostei) from Central and North America based on cytochrome b sequence data. Mol Phylogenet Evol 33:469–481

    Article  CAS  PubMed  Google Scholar 

  • Strecker U, Hausdorf B, Wilkens H (2012) Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico. Mol Phylogenet Evol 62:62–70

    Article  PubMed  Google Scholar 

  • Trontelj P, Goricki S, Polak S et al (2007) Age estimates for some subterranean taxa and lineages in the Dinaric Karst. Time Karst:183–189

    Google Scholar 

  • Weber A, Allegruci G, Sbordoni V (2003) Rhamdia laluchensis, a new species of troglobitic catfish (Siluriformes: Pimelodidae) from Chiapas, Mexico. Ichthyol Explor Freshw 14:273–280

    Google Scholar 

  • Wilcox TP, Garcíy de León FJ, Hendrickson DA et al (2004) Convergence among cave catfishes: long-branch attraction and a Bayesian relative rates test. Mol Phylogenet Evol 31:1101–1113

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm O, Ewing M (1972) Geology and history of the Gulf of Mexico. Geol Soc Am Bull 83:575–600

    Article  Google Scholar 

  • Wilkens H (1971) Genetic interpretation of regressive evolutionary processes: studies on hybrid eyes of two Astyanax cave populations (Characidae, Pisces). Evolution 25:530–544

    Article  Google Scholar 

  • Wilkens H (1979) Reduktionsgrad und phylogenetisches Alter: Ein Beitrag zur Besiedlungsgeschichte der Limnofauna Yukatans. Z Zool Syst Evol 17:262–272

    Article  Google Scholar 

  • Wilkens H (1982) Regressive evolution and phylogenetic age: the history of colonization of freshwaters of Yucatan by fish and Crustacea. Texas Mem Mus Bull 28:237–243

    Google Scholar 

  • Wilkens H (1986) The tempo of regressive evolution: studies of the eye reduction in stygobiont fishes and decapod crustaceans of the Gulf Coast and Western Atlantic region. Stygologia 2:139–143

    Google Scholar 

  • Wilkens H (1988) Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Support for the neutral mutation theory. In: Hecht MK, Wallace B (eds) Evolutionary biology, vol 23. Plenum, New York, pp 271–367

    Chapter  Google Scholar 

  • Wilkens H (2001) Convergent adaptations to cave life in the Rhamdia laticauda catfish group (Pimelodidae, Teleostei). Environ Biol Fishes 62:251–261

    Article  Google Scholar 

  • Wilkens H (2007) Regressive evolution: ontogeny and genetics of cave fish eye rudimentation. Biol J Linn Soc 92:287–296

    Article  Google Scholar 

  • Wilkens H, Strecker U (2003) Convergent evolution of the cavefish Astyanax (Characidae, Teleostei): genetic evidence from reduced eye-size and pigmentation. Biol J Linn Soc 80:545–554

    Article  Google Scholar 

  • Yokoyama S, Meany A, Wilkens H et al (1995) Initial mutational steps toward loss of opsin gene function in cavefish. Mol Biol Evol 2:527–532

    Google Scholar 

  • Zardoya R, Doadrio I (1999) Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. J Mol Evol 49:227–237

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Wilkens, H., Strecker, U. (2017). Surface and Cave Populations of Mexican Astyanax . In: Evolution in the Dark. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54512-6_4

Download citation

Publish with us

Policies and ethics