Skip to main content

Muskelrelaxanzien und ihre Antagonisten

  • Chapter
  • First Online:
Die Anästhesiologie

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Muskelrelaxanzien verhindern die neuromuskuläre Übertragung und werden routinemäßig in der Anästhesie eingesetzt, um die Skelettmuskulatur vorübergehend schlaff zu lähmen. Sie stellen neben Hypnotika und Analgetika eine der drei elementaren Säulen der balancierten Anästhesie dar. Indem sie unwillkürliche Bewegungen und motorische Reflexe verhindern, erleichtern sie die endotracheale Intubation, vermindern das Risiko von Stimmbandschäden, verringern den Gebrauch an Narkotika und ermöglichen gute chirurgische Operationsbedingungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Bernard C (1864) Etudes physiologiques sur quelques poisons americains. Rev Deux Mondes 53:164–190

    Google Scholar 

  2. Bernard C (1851) Lecon sur les effets de substances toxiques et medicamenteuses. Bailliere, Paris

    Google Scholar 

  3. Hinder F, Ludemann P, Hinder S, Ringelstein EB, Van Aken H (1997) [Prolonged muscle weakness in intensive care patients with special attention to the so-called intensive care polyneuromyopathy]. Anaesthesist 46:211–219

    CAS  PubMed  Google Scholar 

  4. Fon EA, Edwards RH (2001) Molecular mechanisms of neurotransmitter release. Muscle Nerve 24:581–601

    CAS  PubMed  Google Scholar 

  5. Rowland LP (2002) Stroke, spasticity, and botulinum toxin. N Engl J Med 347:382–383

    PubMed  Google Scholar 

  6. Van der Kloot W (1991) The regulation of quantal size. Prog Neurobiol 36:93–130

    PubMed  Google Scholar 

  7. Fagerlund MJ, Eriksson LI (2009) Current concepts in neuromuscular transmission. Br J Anaesth 103:108–114

    CAS  PubMed  Google Scholar 

  8. Jonsson Fagerlund M, Dabrowski M, Eriksson LI (2009) Pharmacological characteristics of the inhibition of nondepolarizing neuromuscular blocking agents at human adult muscle nicotinic acetylcholine receptor. Anesthesiology 110:1244–1252

    PubMed  Google Scholar 

  9. Paton WD, Waud DR (1967) The margin of safety of neuromuscular transmission. J Physiol (Lond) 191:59–90

    CAS  PubMed Central  Google Scholar 

  10. Fink H, Helming M, Unterbuchner C et al (2008) Systemic inflammatory response syndrome increases immobility-induced neuromuscular weakness. Crit Care Med 36:910–916

    PubMed  Google Scholar 

  11. Gu Y, Hall ZW (1988) Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuron 1:117–125

    CAS  PubMed  Google Scholar 

  12. Martyn JA, Richtsfeld M (2006) Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology 104:158–169

    CAS  PubMed  Google Scholar 

  13. Martyn JA, White DA, Gronert GA, Jaffe RS, Ward JM (1992) Up-and-down regulation of skeletal muscle acetylcholine receptors. Effects on neuromuscular blockers. Anesthesiology 76:822–843

    CAS  PubMed  Google Scholar 

  14. Waud DR, Waud BE (1975) In vitro measurement of margin of safety of neuromuscular transmission. Am J Physiol 229:1632–1634

    CAS  PubMed  Google Scholar 

  15. Jonsson M, Dabrowski M, Gurley DA et al (2006) Activation and inhibition of human muscular and neuronal nicotinic acetylcholine receptors by succinylcholine. Anesthesiology 104:724–733

    CAS  PubMed  Google Scholar 

  16. Zaimis E (1976) The neuromuscular junction: area of uncertainty. In: Zaimis E (Hrsg) Neuromuscular junction. Springer, Berlin/Heidelberg

    Google Scholar 

  17. Elenes S, Ni Y, Cymes GD, Grosman C (2006) Desensitization contributes to the synaptic response of gain-of-function mutants of the muscle nicotinic receptor. J Gen Physiol 128:615–627

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yakel JL (1996) Gating of nicotinic ACh receptors: latest insights into ligand binding and function. J Physiol 588:597–602

    Google Scholar 

  19. Adams PR, Sakmann B (1978) Decamethonium both opens and blocks endplate channels. Proc Natl Acad Sci U S A 75:2994–2998

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Marshall CG, Ogden DC, Colquhoun D (1990) The actions of suxamethonium (succinyldicholine) as an agonist and channel blocker at the nicotinic receptor of frog muscle. J Physiol 428:155–174

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Griffith HR, Johnson GE (1942) The use of curare in general anesthesia. Anesthesiology 3:418–420

    CAS  Google Scholar 

  22. Hunt R, Taveau RdM (1906) On physiological action of certain choline derivates and new methods for decting choline. Br Med II:1788

    Google Scholar 

  23. Foldes FF, McNall PG, Borrego-Hinojosa JM (1952) Succinylcholine: a new approach to muscular relaxation in anesthesiology. N Engl J Med 247:596–600

    CAS  PubMed  Google Scholar 

  24. Thesleff S (1951) Farmakologiska och kliniska forsok med L.T.I. (O, O-succinylcholine jodid). Nord Med 46:1045

    CAS  PubMed  Google Scholar 

  25. Bovet D (1951) Some aspects of the relationship between chemical structure and curare-like activity. Ann NY Acad Sci 54:407–410

    CAS  PubMed  Google Scholar 

  26. Baird WL, Reid AM (1967) The neuromuscular blocking properties of a new steroid compound, pancuronium bromide. A pilot study in man. Br J Anaesth 39:775–780

    CAS  PubMed  Google Scholar 

  27. Kopman AF, Klewicka MM, Kopman DJ, Neuman GG (1999) Molar potency is predictive of the speed of onset of neuromuscular block for agents of intermediate, short, and ultrashort duration. Anesthesiology 90:425–431

    CAS  PubMed  Google Scholar 

  28. Kopman AF (2003) The influence of the duration of anesthesia on neuromuscular potency. Anesthesiology 98:1300–1301

    PubMed  Google Scholar 

  29. Melnikov AL, Malakhov KY, Helgesen KG, Lathrop DA (1999) Cardiac effects of non-depolarizing neuromuscular blocking agents pancuronium, vecuronium, and rocuronium in isolated rat atria. Gen Pharmacol 33:313–317

    CAS  PubMed  Google Scholar 

  30. Beemer GH, Dawson PJ, Bjorksten AR, Edwards NE (1989) Early postoperative seizures in neurosurgical patients administered atracurium and isoflurane. Anaesth Intensive Care 17:504–509

    CAS  PubMed  Google Scholar 

  31. Mesry S, Baradaran J (1974) Accidental intrathecal injection of gallamine triethiodide. Anaesthesia 29:301–304

    CAS  PubMed  Google Scholar 

  32. Szenohradszky J, Trevor AJ, Bickler P et al (1993) Central nervous system effects of intrathecal muscle relaxants in rats. Anesth Analg 76:1304–1309

    CAS  PubMed  Google Scholar 

  33. Chiodini F, Charpantier E, Muller D et al (2001) Blockade and activation of the human neuronal nicotinic acetylcholine receptors by atracurium and laudanosine. Anesthesiology 94:643–651

    CAS  PubMed  Google Scholar 

  34. Fodale V, Santamaria LB (2002) Laudanosine, an atracurium and cisatracurium metabolite. Eur J Anaesthesiol 19:466–473

    CAS  PubMed  Google Scholar 

  35. Lowman MA, Rees PH, Benyon RC, Church MK (1988) Human mast cell heterogeneity: histamine release from mast cells dispersed from skin, lung, adenoids, tonsils, and colon in response to IgE-dependent and nonimmunologic stimuli. J Allergy Clin Immunol 81:590–597

    CAS  PubMed  Google Scholar 

  36. Hepner DL, Castells MC (2003) Anaphylaxis during the perioperative period. Anesth Analg 97:1381–1395

    PubMed  Google Scholar 

  37. Lien CA, Belmont MR, Abalos A et al (1995) The cardiovascular effects and histamine-releasing properties of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 82:1131–1138

    CAS  PubMed  Google Scholar 

  38. Savarese JJ, Ali HA, Basta SJ et al (1989) The cardiovascular effects of mivacurium chloride (BW B1090U) in patients receiving nitrous oxide – opiate – barbiturate anesthesia. Anesthesiology 70:386–394

    CAS  PubMed  Google Scholar 

  39. Scott RP, Savarese JJ, Basta SJ et al (1985) Atracurium: clinical strategies for preventing histamine release and attenuating the haemodynamic response. Br J Anaesth 57:550–553

    CAS  PubMed  Google Scholar 

  40. Mertes PM, Aimone-Gastin I, Gueant-Rodriguez RM et al (2008) Hypersensitivity reactions to neuromuscular blocking agents. Curr Pharm Des 14:2809–2825

    CAS  PubMed  Google Scholar 

  41. Mertes PM, Laxenaire MC (2002) Allergic reactions occurring during anaesthesia. Eur J Anaesthesiol 19:240–262

    CAS  PubMed  Google Scholar 

  42. Moneret-Vautrin DA, Kanny G (2002) Anaphylaxis to muscle relaxants: rational for skin tests. Allerg Immunol (Paris) 34:233–240

    CAS  Google Scholar 

  43. Dhonneur G, Combes X, Chassard D, Merle JC (2004) Skin sensitivity to rocuronium and vecuronium: a randomized controlled prick-testing study in healthy volunteers. Anesth Analg 98:986–989

    CAS  PubMed  Google Scholar 

  44. Baldo BA, Fisher MM (1983) Anaphylaxis to muscle relaxant drugs: cross-reactivity and molecular basis of binding of IgE antibodies detected by radioimmunoassay. Mol Immunol 20:1393–1400

    CAS  PubMed  Google Scholar 

  45. Mertes PM, Moneret-Vautrin DA, Leynadier F, Laxenaire MC (2007) Skin reactions to intradermal neuromuscular blocking agent injections: a randomized multicenter trial in healthy volunteers. Anesthesiology 107:245–252

    CAS  PubMed  Google Scholar 

  46. Laxenaire MC (1999) [Epidemiology of anesthetic anaphylactoid reactions. Fourth multicenter survey (July 1994–December 1996)]. Ann Fr Anesth Reanim 18:796–809

    CAS  PubMed  Google Scholar 

  47. Eriksson LI (1997) Recovery from neuromuscular block and vital function testing. Acta Anaesthesiol Belg 48:45–48

    CAS  PubMed  Google Scholar 

  48. Berry FA Jr (1996) Intramuscular rocuronium in infants and children – is there a need? Anesthesiology 85:229–230

    PubMed  Google Scholar 

  49. Atherton DP, Hunter JM (1999) Clinical pharmacokinetics of the newer neuromuscular blocking drugs. Clin Pharmacokinet 36:169–189

    CAS  PubMed  Google Scholar 

  50. Savarese JJ, Ali HH, Basta SJ et al (1988) The clinical neuromuscular pharmacology of mivacurium chloride (BW B1090U): a short-acting nondepolarizing ester neuromuscular blocking drug. Anesthesiology 68:723–732

    CAS  PubMed  Google Scholar 

  51. Kalow W, Genest K (1957) A method for the detection of atypical forms of human serum cholinesterase. Determination of dibucaine numbers. Can J Biochem Physiol 35:339–346

    CAS  PubMed  Google Scholar 

  52. Harris H, Whittaker M (1961) Differential inhibition of human serum cholinesterase with fluoride: recognition of two new phenotypes. Nature 191:496–498

    CAS  PubMed  Google Scholar 

  53. McAlpine PJ, Dixon M, Allderdice PW, Lockridge O, La Du BN (1991) The butyrylcholinesterase gene (BCHE) at 3q26.2 shows two RFLPs. Nucleic Acids Res 19:5088

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zeidler EM, Goetz AE, Zöllner C (2013) Pharmakogenetik. Klinische Bedeutung in der Anästhesiologie. Anaesthesist 62:874–886

    CAS  PubMed  Google Scholar 

  55. Pantuck EJ (1993) Plasma cholinesterase: gene and variations. Anesth Analg 77:380–386

    CAS  PubMed  Google Scholar 

  56. Motamed C, Kirov K, Lieutaud T, Duvaldestin P (2000) The mechanism of pancuronium potentiation of mivacurium block: use of the isolated-arm technique. Anesth Analg 91:732–735

    CAS  PubMed  Google Scholar 

  57. Stovner J, Oftedal N, Holmboe J (1975) The inhibition of cholinesterases by pancuronium. Br J Anaesth 47:949–954

    CAS  PubMed  Google Scholar 

  58. Fisher DM, Caldwell JE, Sharma M, Wiren JE (1988) The influence of bambuterol (carbamylated terbutaline) on the duration of action of succinylcholine-induced paralysis in humans. Anesthesiology 69:757–759

    CAS  PubMed  Google Scholar 

  59. Kao YJ, Turner DR (1989) Prolongation of succinylcholine block by metoclopramide. Anesthesiology 70:905–908

    CAS  PubMed  Google Scholar 

  60. Pantuck EJ (1966) Ecothiopate iodide eye drops and prolonged response to suxamethonium. Br J Anaesth 38:406–407

    CAS  PubMed  Google Scholar 

  61. Weindlmayr-Goettel M, Gilly H, Kress HG (2002) Does ester hydrolysis change the in vitro degradation rate of cisatracurium and atracurium? Br J Anaesth 88:555–562

    CAS  PubMed  Google Scholar 

  62. Waser PG, Wiederkehr H, Sin-Ren AC, Kaiser-Schonenberger E (1987) Distribution and kinetics of 14C-vecuronium in rats and mice. Br J Anaesth 59:1044–1051

    CAS  PubMed  Google Scholar 

  63. Kremer JM, Wilting J, Janssen LH (1988) Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev 40:1–47

    CAS  PubMed  Google Scholar 

  64. Fink H, Luppa P, Mayer B et al (2003) Systemic inflammation leads to resistance to atracurium without increasing membrane expression of acetylcholine receptors. Anesthesiology 98:82–88

    CAS  PubMed  Google Scholar 

  65. Iwasaki H, Igarashi M, Yamauchi M, Namiki A (1995) The effect of cardiac output on the onset of neuromuscular block by vecuronium. Anaesthesia 50:361–362

    CAS  PubMed  Google Scholar 

  66. Donati F, Meistelman C, Plaud B (1990) Vecuronium neuromuscular blockade at the diaphragm, the orbicularis oculi, and adductor pollicis muscles. Anesthesiology 73:870–875

    CAS  PubMed  Google Scholar 

  67. Meistelman C, Plaud B, Donati F (1992) Rocuronium (ORG 9426) neuromuscular blockade at the adductor muscles of the larynx and adductor pollicis in humans. Can J Anaesth 39:665–669

    CAS  PubMed  Google Scholar 

  68. Varin F, Ducharme J, Besner JG, Theoret Y (1990) Determination of atracurium and laudanosine in human plasma by high- performance liquid chromatography. J Chromatogr 529:319–327

    CAS  PubMed  Google Scholar 

  69. Fisher DM, Miller RD (1983) Neuromuscular effects of vecuronium (ORG NC45) in infants and children during N2O, halothane anesthesia. Anesthesiology 58:519–523

    CAS  PubMed  Google Scholar 

  70. Markakis DA, Hart PS, Lau M, Brown R, Fisher DM (1996) Does age or pseudocholinesterase activity predict mivacurium infusion rate in children? Anesth Analg 82:39–43

    CAS  PubMed  Google Scholar 

  71. Meistelman C, Agoston S, Kersten UW et al (1986) Pharmacokinetics and pharmacodynamics of vecuronium and pancuronium in anesthetized children. Anesth Analg 65:1319–1323

    CAS  PubMed  Google Scholar 

  72. Smeulers NJ, Wierda JM, van den Broek L, Gallandat Huet RC, Hennis PJ (1995) Hypothermic cardiopulmonary bypass influences the concentration-response relationship and the biodisposition of rocuronium. Eur J Anaesthesiol Suppl 11:91–94

    CAS  PubMed  Google Scholar 

  73. Leslie K, Sessler DI, Bjorksten AR, Moayeri A (1995) Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg 80:1007–1014

    CAS  PubMed  Google Scholar 

  74. Buzello W, Noeldge G, Krieg N, Brobmann GF (1986) Vecuronium for muscle relaxation in patients with myasthenia gravis. Anesthesiology 64:507–509

    CAS  PubMed  Google Scholar 

  75. Rump AF, Schierholz J, Biederbick W et al (1999) Pseudocholinesterase-activity reduction during cardiopulmonary bypass: the role of dilutional processes and pharmacological agents. Gen Pharmacol 32:65–69

    CAS  PubMed  Google Scholar 

  76. Foldes FF, Rendell-Baker L, Birch J (1956) Causes and prevention of prolonged apnea with succinylcholine. Anesth Analg 25:609

    Google Scholar 

  77. Mayrhofer O (1951) Kurz wirkende Muskelerschlaffungsmittel. Selbstversuche und klinische Erprobung am narkotisierten Menschen. Wien Klin Wochenschr 63:885–889

    CAS  PubMed  Google Scholar 

  78. Fink H, Geldner G, Fuchs-Buder T et al (2006) [Muscle relaxants in Germany 2005: a comparison of application customs in hospitals and private practices]. Anaesthesist 55:668–678

    CAS  PubMed  Google Scholar 

  79. Naguib M, Samarkandi A, Riad W, Alharby SW (2003) Optimal dose of succinylcholine revisited. Anesthesiology 99:1045–1049

    PubMed  Google Scholar 

  80. Perry JJ, Lee JS, Sillberg VA, Wells GA (2008) Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst Rev CD002788

    Google Scholar 

  81. Vinik HR (1999) Intraocular pressure changes during rapid sequence induction and intubation: a comparison of rocuronium, atracurium, and succinylcholine. J Clin Anesth 11:95–100

    CAS  PubMed  Google Scholar 

  82. Vachon CA, Warner DO, Bacon DR (2003) Succinylcholine and the open globe. Tracing the teaching. Anesthesiology 99:220–223

    PubMed  Google Scholar 

  83. Gronert GA, Theye RA (1975) Pathophysiology of hyperkalemia induced by succinylcholine. Anesthesiology 43:89–99

    CAS  PubMed  Google Scholar 

  84. Mayrhofer O (1959) Die Wirksamkeit von d-Tubocurarin zur Verhütung der Muskelschmerzen nach Succinylcholin. Anaesthesist 8:313–315

    CAS  Google Scholar 

  85. Schreiber JU, Lysakowski C, Fuchs-Buder T, Tramer MR (2005) Prevention of succinylcholine-induced fasciculation and myalgia: a meta-analysis of randomized trials. Anesthesiology 103:877–884

    CAS  PubMed  Google Scholar 

  86. Mencke T, Becker C, Schreiber J, Bolte M, Fuchs-Buder T (2002) [Precurarization of succinylcholine with cisatracurium: the influence of the precurarization interval]. Anaesthesist 51:721–725

    CAS  PubMed  Google Scholar 

  87. Ishigaki S, Masui K, Kazama T (2016) Saline flush after rocuronium bolus reduces onset time and prolongs duration of effect: a randomized clinical trial. Anesth Analg 122:706–711

    CAS  PubMed  Google Scholar 

  88. Grosse-Sundrup M, Henneman JP, Sandberg WS, Bateman BT, Uribe JV, Nguyen NT, Ehrenfeld JM, Martinez EA, Kurth T, Eikermann M (2012) Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. BMJ 345:e6329

    PubMed  PubMed Central  Google Scholar 

  89. McLean DJ, Diaz-Gil D, Farhan HN, Ladha KS, Kurth T, Eikermann M (2015) Dose-dependent association between intermediate-acting neuromuscular-blocking agents and postoperative respiratory complications. Anesthesiology 122:1201–1213

    CAS  PubMed  Google Scholar 

  90. Blobner M, Frick CG, Stäuble RB, Feussner H, Schaller SJ, Unterbuchner C, Lingg C, Geisler M, Fink H (2015) Neuromuscular blockade improves surgical conditions (NISCO). Surg Endosc 29:627–636

    PubMed  Google Scholar 

  91. Baumüller E, Schaller SJ, Chiquito Lama Y, Frick CG, Bauhofer T, Eikermann M, Fink H, Blobner M (2015) Postoperative impairment of motor function at train-of-four ratio ≥0.9 cannot be improved by sugammadex (1 mg kg-1). Br J Anaesth 114:785–793

    PubMed  Google Scholar 

  92. Cammu G, De Witte J, De Veylder J et al (2006) Postoperative residual paralysis in outpatients versus inpatients. Anesth Analg 102:426–429

    PubMed  Google Scholar 

  93. Fortier LP, McKeen D, Turner K, de Médicis É, Warriner B, Jones PM, Chaput A, Pouliot JF, Galarneau A (2015) The RECITE study: a Canadian prospective, multicenter study of the incidence and severity of residual neuromuscular blockade. Anesth Analg 121:366–372

    PubMed  Google Scholar 

  94. Maybauer DM, Geldner G, Blobner M et al (2007) Incidence and duration of residual paralysis at the end of surgery after multiple administrations of cisatracurium and rocuronium. Anaesthesia 62:12–17

    CAS  PubMed  Google Scholar 

  95. Beemer GH (1993) Pharmacodynamics of atracurium in clinical practice: effect of plasma potassium, patient demographics, and concurrent medication. Anesth Analg 76:1288–1295

    CAS  PubMed  Google Scholar 

  96. Cook DR, Freeman JA, Lai AA et al (1992) Pharmacokinetics of Mivacurium in normal patients and in those with hepatic or renal failure. Br J Anaesth 69:580–585

    CAS  PubMed  Google Scholar 

  97. Mathiesen I, Rimer M, Ashtari O et al (1999) Regulation of the size and distribution of agrin-induced postsynaptic- like apparatus in adult skeletal muscle by electrical muscle activity. Mol Cell Neurosci 13:207–217

    CAS  PubMed  Google Scholar 

  98. Naguib M, Flood P, McArdle JJ, Brenner HR (2002) Advances in neurobiology of the neuromuscular junction: implications for the anesthesiologist. Anesthesiology 96:202–231

    CAS  PubMed  Google Scholar 

  99. Ibebunjo C, Martyn JA (1999) Fiber atrophy, but not changes in acetylcholine receptor expression, contributes to the muscle dysfunction after immobilization. Crit Care Med 27:275–285

    CAS  PubMed  Google Scholar 

  100. Hogue CW Jr, Itani MS, Martyn JA (1990) Resistance to d-tubocurarine in lower motor neuron injury is related to increased acetylcholine receptors at the neuromuscular junction. Anesthesiology 73:703–709

    CAS  PubMed  Google Scholar 

  101. Kim C, Fuke N, Martyn JA (1988) Burn injury to rat increases nicotinic acetylcholine receptors in the diaphragm. Anesthesiology 68:401–406

    CAS  PubMed  Google Scholar 

  102. Shayevitz JR, Matteo RS (1985) Decreased sensitivity to metocurine in patients with upper motoneuron disease. Anesth Analg 64:767–772

    CAS  PubMed  Google Scholar 

  103. Frick CG, Richtsfeld M, Sahani ND et al (2007) Long-term effects of botulinum toxin on neuromuscular function. Anesthesiology 106:1139–1146

    CAS  PubMed  Google Scholar 

  104. Viby Mogensen J, Hanel HK, Hansen E, Graae J (1975) Serum cholinesterase activity in burned patients. II: anaesthesia, suxamethonium and hyperkalaemia. Acta Anaesthesiol Scand 19:169–179

    CAS  PubMed  Google Scholar 

  105. Kohlschütter B, Baur H, Roth F (1976) Suxamethonium-induced hyperkalaemia in patients with severe intra-abdominal infections. Br J Anaesth 48:557–562

    PubMed  Google Scholar 

  106. John DA, Tobey RE, Homer LD, Rice CL (1976) Onset of succinylcholine-induced hyperkalemia following denervation. Anesthesiology 45:294–299

    CAS  PubMed  Google Scholar 

  107. Tobey RE (1970) Paraplegia, succinylcholine and cardiac arrest. Anesthesiology 32:359–364

    CAS  PubMed  Google Scholar 

  108. Cooperman LH (1970) Succinylcholine-induced hyperkalemia in neuromuscular disease. JAMA 213:1867–1871

    CAS  PubMed  Google Scholar 

  109. Walton JD, Farman JV (1973) Suxamethonium hyperkalaemia in uraemic neuropathy. Anaesthesia 28:666–668

    CAS  PubMed  Google Scholar 

  110. Eldridge L, Liebhold M, Steinbach JH (1981) Alterations in cat skeletal neuromuscular junctions following prolonged inactivity. J Physiol 313:529–545

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ikezu T, Okamoto T, Yonezawa K, Tompkins RG, Martyn JA (1997) Analysis of thermal injury-induced insulin resistance in rodents. Implication of postreceptor mechanisms. J Biol Chem 272:25289–25295

    CAS  PubMed  Google Scholar 

  112. Yanez P, Martyn JA (1996) Prolonged d-tubocurarine infusion and/or immobilization cause upregulation of acetylcholine receptors and hyperkalemia to succinylcholine in rats. Anesthesiology 84:384–391

    CAS  PubMed  Google Scholar 

  113. Blobner M, Busley R, Mann R, Jelen-Esselborn S, Kochs E (1999) Die neuromuskuläre Erholung nach Mivacurium läßt sich auch bei Patienten mit schweren Begleiterkrankungen prognostizieren. Anasthesiol Intensivmed Notfallmed Schmerzther 34:638–641

    CAS  PubMed  Google Scholar 

  114. Knüttgen D, Doehn M, Zeidler D (1997) Postoperative Resistenzentwicklung gegenüber Atracurium. Anaesthesist 46:974–978

    PubMed  Google Scholar 

  115. Tomera JF, Martyn JJ (1989) Intraperitoneal endotoxin but not protein malnutrition shifts d-tubocurarine dose-response curves in mouse gastrocnemius muscle. J Pharmacol Exp Ther 250:216–220

    CAS  PubMed  Google Scholar 

  116. Knüttgen D, Zeidler D, Lefering R, Muller-Gorges MR, Doehn M (1998) Verminderte Wirksamkeit von Atracurium bei Patienten mit intrathorakalem Eiterherd. Anaesthesist 47:936–939

    PubMed  Google Scholar 

  117. Eisenkraft JB, Book WJ, Mann SM, Papatestas AE, Hubbard M (1988) Resistance to succinylcholine in myasthenia gravis: a dose-response study. Anesthesiology 69:760–763

    CAS  PubMed  Google Scholar 

  118. Baraka A (1992) Suxamethonium block in the myasthenic patient. Correlation with plasma cholinesterase. Anaesthesia 47:217–219

    CAS  PubMed  Google Scholar 

  119. Fuchs-Buder T, Sparr HJ, Ziegenfuss T (1998) Thiopental or etomidate for rapid sequence induction with rocuronium [see comments]. Br J Anaesth 80:504–506

    CAS  PubMed  Google Scholar 

  120. Gill RS, Scott RP (1992) Etomidate shortens the onset time of neuromuscular block. Br J Anaesth 69:444–446

    CAS  PubMed  Google Scholar 

  121. Latorre F, de Almeida MC, Stanek A, Weiler N, Kleemann PP (1996) [The effects of cimetidine on the pharmacodynamics of rocuronium]. Anaesthesist 45:900–902

    CAS  PubMed  Google Scholar 

  122. Harrah MD, Way WL, Katzung BG (1970) The interaction of d-tubocurarine with antiarrhythmic drugs. Anesthesiology 33:406–410

    CAS  PubMed  Google Scholar 

  123. Kim CS, Arnold FJ, Itani MS, Martyn JA (1992) Decreased sensitivity to metocurine during long-term phenytoin therapy may be attributable to protein binding and acetylcholine receptor changes. Anesthesiology 77:500–506

    CAS  PubMed  Google Scholar 

  124. Fiekers JF (1999) Sites and mechanisms of antibiotic-induced neuromuscular block: a pharmacological analysis using quantal content, voltage clamped end-plate currents and single channel analysis. Acta Physiol Pharmacol Ther Latinoam 49:242–250

    CAS  PubMed  Google Scholar 

  125. Fuchs-Buder T, Wilder Smith OH, Borgeat A, Tassonyi E (1995) Interaction of magnesium sulphate with vecuronium-induced neuromuscular block. Br J Anaesth 74:405–409

    CAS  PubMed  Google Scholar 

  126. Ghoneim MM, Long JP (1970) The interaction between magnesium and other neuromuscular blocking agents. Anesthesiology 32:23–27

    CAS  PubMed  Google Scholar 

  127. Scheller M, Bufler J, Schneck H, Kochs E, Franke C (1997) Isoflurane and sevoflurane interact with the nicotinic acetylcholine receptor channels in micromolar concentrations. Anesthesiology 86:118–127

    CAS  PubMed  Google Scholar 

  128. Liu M, Kato M, Hashimoto Y (2001) Neuromuscular blocking effects of the aminoglycoside antibiotics arbekacin, astromicin, isepamicin and netilmicin on the diaphragm and limb muscles in the rabbit. Pharmacology 63:142–146

    CAS  PubMed  Google Scholar 

  129. Sieb JP, Milone M, Engel AG (1996) Effects of the quinoline derivatives quinine, quinidine, and chloroquine on neuromuscular transmission. Brain Res 712:179–189

    CAS  PubMed  Google Scholar 

  130. Fryer JD, Lukas RJ (1999) Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function. J Neurochem 72:1117–1124

    CAS  PubMed  Google Scholar 

  131. Scheller M, Bufler J, Hertle I et al (1996) Ketamine blocks currents through mammalian nicotinic acetylcholine receptor channels by interaction with both the open and the closed state. Anesth Analg 83:830–836

    CAS  PubMed  Google Scholar 

  132. Hertle I, Scheller M, Bufler J et al (1997) Interaction of midazolam with the nicotinic acetylcholine receptor of mouse myotubes. Anesth Analg 85:174–181

    CAS  PubMed  Google Scholar 

  133. Krampfl K, Schlesinger F, Dengler R et al (2000) Pentobarbital has curare-like effects on adult-type nicotinic acetylcholine receptor channel currents. Anesth Analg 90:970–974

    CAS  PubMed  Google Scholar 

  134. Driessen JJ, Wuis EW, Gielen MJ (1985) Prolonged vecuronium neuromuscular blockade in a patient receiving orally administered dantrolene. Anesthesiology 62:523–524

    CAS  PubMed  Google Scholar 

  135. Fanelli V, Morita Y, Cappello P, Ghazarian M, Sugumar B, Delsedime L, Batt J, Ranieri VM, Zhang H, Slutsky AS (2016) Neuromuscular blocking agent cisatracurium attenuates lung injury by inhibition of nicotinic acetylcholine receptor-α1. Anesthesiology 124:132–140

    CAS  PubMed  Google Scholar 

  136. Arroliga A, Frutos-Vivar F, Hall J, Esteban A, Apezteguía C, Soto L, Anzueto A, International Mechanical Ventilation Study Group (2005) Use of sedatives and neuromuscular blockers in a cohort of patients receiving mechanical ventilation. Chest 128:496–506

    PubMed  Google Scholar 

  137. Needham CJ, Brindley PG (2012) Best evidence in critical care medicine: the role of neuromuscular blocking drugs in early severe acute respiratory distress syndrome. Can J Anaesth 59:105–108

    PubMed  Google Scholar 

  138. Neto AS, Pereira VG, Espósito DC, Damasceno MC, Schultz MJ (2012) Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care 2:33

    PubMed  PubMed Central  Google Scholar 

  139. Greenberg SB, Vender J (2013) The use of neuromuscular blocking agents in the ICU: where are we now? Crit Care Med 41:1332–1344

    CAS  PubMed  Google Scholar 

  140. Eikermann M, Groeben H, Husing J, Peters J (2003) Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology 98:1333–1337

    PubMed  Google Scholar 

  141. Eriksson LI, Sundman E, Olsson R et al (1997) Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans. Simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 87:1035–1043

    CAS  PubMed  Google Scholar 

  142. Berg H, Roed J, Viby-Mogensen J et al (1997) Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 41:1095–1103

    CAS  PubMed  Google Scholar 

  143. Heerdt PM, Sunaga H, Savarese JJ (2015) Novel neuromuscular blocking drugs and antagonists. Curr Opin Anaesthesiol 28:403–410

    CAS  PubMed  Google Scholar 

  144. Sasaki N, Meyer MJ, Malviya SA, Stanislaus AB, MacDonald T, Doran ME, Igumenshcheva A, Hoang AH, Eikermann M (2014) Effects of neostigmine reversal of nondepolarizing neuromuscular blocking agents on postoperative respiratory outcomes: a prospective study. Anesthesiology 121:959–968

    CAS  PubMed  Google Scholar 

  145. Miller RD, Roderick LL (1978) Acid-base balance and neostigmine antagonism of pancuronium neuromuscular blockade. Br J Anaesth 50:317–324

    CAS  PubMed  Google Scholar 

  146. Miller RD, Van Nyhuis LS, Eger EI 2nd, Way WL (1975) The effect of acid-base balance on neostigmine antagonism of d-tubocurarine-induced neuromuscular blockade. Anesthesiology 42:377–383

    CAS  PubMed  Google Scholar 

  147. Bom A, Van Egmond J, Hope F, van de Pol BS (2002) Rapid reversal of rocuronium-induced neuromuscular block by ORG 25969 is independent of renal perfusion. Anesthesiology 99:A1158

    Google Scholar 

  148. Gijsenbergh F, Ramael S, Houwing N, van Iersel T (2005) First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology 103:695–703

    CAS  PubMed  Google Scholar 

  149. Boer HD de, van Egmond J, van de Pol F, Bom A, Booij LH (2006) Sugammadex, a new reversal agent for neuromuscular block induced by rocuronium in the anaesthetized Rhesus monkey. Br J Anaesth 96:473–479

    Google Scholar 

  150. Blobner M, Eriksson LI, Scholz J et al (2010) Reversal of rocuronium-induced neuromuscular blockade with sugammadex compared with neostigmine during sevoflurane anaesthesia: results of a randomised, controlled trial. Eur J Anaesthesiol 27:874–881

    CAS  PubMed  Google Scholar 

  151. Jones RK, Caldwell JE, Brull SJ, Soto RG (2008) Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology 109:816–824

    CAS  PubMed  Google Scholar 

  152. Lee C, Jahr JS, Candiotti KA et al (2009) Reversal of profound neuromuscular block by sugammadex administered three minutes after rocuronium: a comparison with spontaneous recovery from succinylcholine. Anesthesiology 110:1020–1025

    CAS  PubMed  Google Scholar 

  153. de Souza CM, Tardelli MA, Tedesco H, Garcia NN, Caparros MP, Alvarez-Gomez JA, de Oliveira Junior IS (2015) Efficacy and safety of sugammadex in the reversal of deep neuromuscular blockade induced by rocuronium in patients with end-stage renal disease: a comparative prospective clinical trial. Eur J Anaesthesiol 32:681–686

    PubMed  Google Scholar 

  154. Kaufhold N, Schaller SJ, Stäuble CG, Baumüller E, Ulm K, Blobner M, Fink H (2016) Sugammadex and neostigmine dose-finding study for reversal of residual neuromuscular block at a train-of-four ratio of 0.2 (SUNDRO20). Br J Anaesth 116:233–240

    CAS  PubMed  Google Scholar 

  155. US Food and Drug Administration (2008) Sugammadex, NDA 22-225, Anesthetic and Life Support Drugs Advisory Committee March 11, 2008. http://www.fda.gov/ohrms/dockets/ac/08/slides/2008-4346s1-01-Schering-Plough-corebackup.pdf. Zugegriffen am 04.08.2017

  156. Buonanno P, Laiola A, Palumbo C, Spinelli G, Servillo G, Di Minno RM, Cafiero T, Di Iorio C (2016) Dexamethasone does not inhibit sugammadex reversal after rocuronium-induced neuromuscular block. Anesth Analg 122:1826–1830

    CAS  PubMed  Google Scholar 

  157. Amorim P, Lagarto F, Gomes B, Esteves S, Bismarck J, Rodrigues N, Nogueira M (2014) Neostigmine vs. sugammadex: observational cohort study comparing the quality of recovery using the Postoperative Quality Recovery Scale. Acta Anaesthesiol Scand 58:1101–1110

    CAS  PubMed  Google Scholar 

  158. Carron M, Veronese S, Foletto M, Ori C (2013) Sugammadex allows fast-track bariatric surgery. Obes Surg 23:1558–1563

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Blobner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blobner, M., Lewald, H., Busley, R. (2019). Muskelrelaxanzien und ihre Antagonisten. In: Rossaint, R., Werner, C., Zwißler, B. (eds) Die Anästhesiologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54507-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54507-2_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54505-8

  • Online ISBN: 978-3-662-54507-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics