Skip to main content

Hypnotika in der Anästhesiologie: Barbiturate, Propofol, Etomidat

  • Chapter
  • First Online:

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Hypnotika werden sowohl zur Narkoseeinleitung und -aufrechterhaltung im Rahmen einer totalen intravenösen Anästhesie (TIVA) als auch zur Sedierung auf Intensivstationen eingesetzt. Entsprechend hoch ist ihr Stellenwert in der Anästhesie. Das Kapitel gibt einen Überblick über den grundsätzlichen Wirkmechanismus der Hypnotika sowie die Pharmakokinetik, Pharmakodynamik und die klinischen Anwendungsgebiete der einzelnen Hypnotika.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Franks NP, Lieb WR (1997) Inhibitory synapses. Anaesthetics set their sites on ion channels. Nature 389:334–335

    Article  CAS  Google Scholar 

  2. Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. N Engl J Med 363:2638–2650

    Article  CAS  Google Scholar 

  3. Price HL (1960) A dynamic concept of the distribution of thiopental in the human body. Anesthesiology 21:40–45

    Article  CAS  Google Scholar 

  4. Hudson RJ, Stanski DR, Burch PG (1983) Pharmacokinetics of methohexital and thiopental in surgical patients. Anesthesiology 59:215–219

    Article  CAS  Google Scholar 

  5. Hempel V (1994) 60 years thiopental. Anästhesiol Intensivmed Notfallmed Schmerzther: AINS 29:400–407

    Article  CAS  Google Scholar 

  6. Van Hamme MJ, Ghoneim MM, Ambre JJ (1978) Pharmacokinetics of etomidate, a new intravenous anesthetic. Anesthesiology 49:274–277

    Article  Google Scholar 

  7. Vanlersberghe C, Camu F (2008) Etomidate and other non-barbiturates. Handb Exp Pharmacol 182:267–282

    Article  CAS  Google Scholar 

  8. Roberts I (2000) Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev (12):CD000033

    Google Scholar 

  9. Eames WO, Rooke GA, Wu RS, Bishop MJ (1996) Comparison of the effects of etomidate, propofol, and thiopental on respiratory resistance after tracheal intubation. Anesthesiology 84:1307–1311

    Article  CAS  Google Scholar 

  10. Avram MJ, Sanghvi R, Henthorn TK et al (1993) Determinants of thiopental induction dose requirements. Anesth Analg 76:10–17

    Article  CAS  Google Scholar 

  11. Masui K, Upton RN, Doufas AG et al (2010) The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth Analg 111:368–379

    Article  CAS  Google Scholar 

  12. Eleveld DJ et al (2014) A general purpose pharmacokinetic model for propofol. Anesth Analg 118(6):1221–1237. https://doi.org/10.1213/ANE.0000000000000165

  13. Smith I, White PF, Nathanson M, Gouldson R (1994) Propofol. An update on its clinical use. Anesthesiology 81:1005–1043

    Article  CAS  Google Scholar 

  14. Hoymork SC, Raeder J (2005) Why do women wake up faster than men from propofol anaesthesia? Br J Anaesth 95:627–633

    Article  CAS  Google Scholar 

  15. Hiraoka H, Yamamoto K, Miyoshi S et al (2005) Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol 60:176–182

    Article  CAS  Google Scholar 

  16. Takizawa D, Hiraoka H, Goto F et al (2005) Human kidneys play an important role in the elimination of propofol. Anesthesiology 102:327–330

    Article  CAS  Google Scholar 

  17. He YL, Ueyama H, Tashiro C et al (2000) Pulmonary disposition of propofol in surgical patients. Anesthesiology 93:986–991

    Article  CAS  Google Scholar 

  18. Apfel CC, Korttila K, Abdalla M et al (2004) A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. N Engl J Med 350:2441–2451

    Article  CAS  Google Scholar 

  19. Barann M, Linden I, Witten S, Urban BW (2008) Molecular actions of propofol on human 5-HT3A receptors: enhancement as well as inhibition by closely related phenol derivatives. Anesth Analg 106:846–857

    Article  CAS  Google Scholar 

  20. Schelling G, Hauer D, Azad SC et al (2006) Effects of general anesthesia on anandamide blood levels in humans. Anesthesiology 104:273–277

    Article  CAS  Google Scholar 

  21. Borgeat A, Wilder-Smith OH, Saiah M, Rifat K (1992) Subhypnotic doses of propofol possess direct antiemetic properties. Anesth Analg 74:539–541

    Article  CAS  Google Scholar 

  22. Doenicke AW, Roizen MF, Rau J et al (1996) Reducing pain during propofol injection: the role of the solvent. Anesth Analg 82:472–474

    CAS  PubMed  Google Scholar 

  23. Jalota L, Kalira V, George E et al (2011) Prevention of pain on injection of propofol: systematic review and meta-analysis. BMJ 342:d1110

    Article  Google Scholar 

  24. Picard P, Tramer MR (2000) Prevention of pain on injection with propofol: a quantitative systematic review. Anesth Analg 90:963–969

    Article  CAS  Google Scholar 

  25. Bennett SN, McNeil MM, Bland LA et al (1995) Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med 333:147–154

    Article  CAS  Google Scholar 

  26. Matot I, Neely CF, Katz RY, Marshall BE (1994) Fentanyl and propofol uptake by the lung: effect of time between injections. Acta Anaesthesiol Scand 38:711–715

    Article  CAS  Google Scholar 

  27. Nitsun M, Szokol JW, Saleh HJ et al (2006) Pharmacokinetics of midazolam, propofol, and fentanyl transfer to human breast milk. Clin Pharmacol Ther 79:549–557

    Article  CAS  Google Scholar 

  28. Schmidt H (1998) Intubation anesthesia and nursing. Anaesthesist 47:81–82

    Article  CAS  Google Scholar 

  29. Reinhold P, Kraus G, Schlüter E (1998) Propofol for anesthesia and short-term sedation. The final word on use in children under three years. Anaesthesist 47:229–237

    Article  CAS  Google Scholar 

  30. De Smet T, Struys MM, Neckebroek MM et al (2008) The accuracy and clinical feasibility of a new bayesian-based closed-loop control system for propofol administration using the bispectral index as a controlled variable. Anesth Analg 107:1200–1210

    Article  Google Scholar 

  31. Hemmerling (2013) Evaluation of a novel closed-loop total intravenous anaesthesia drug delivery system: a randomizedcontrolled trial. Br J Anaesth 110(6):1031–1039

    Article  CAS  Google Scholar 

  32. Hornuss C, Praun S, Villinger J et al (2007) Real-time monitoring of propofol in expired air in humans undergoing total intravenous anesthesia. Anesthesiology 106:665–674

    Article  CAS  Google Scholar 

  33. Takita A, Masui K, Kazama T (2007) On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology 106:659–664

    Article  CAS  Google Scholar 

  34. Cremer OL, Moons KG, Bouman EA et al (2001) Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet 357:117–118

    Article  CAS  Google Scholar 

  35. Bray RJ (1998) Propofol infusion syndrome in children. Paediatr Anaesth 8:491–499

    Article  CAS  Google Scholar 

  36. Fudickar A, Bein B, Tonner PH (2006) Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol 19:404–410

    Article  Google Scholar 

  37. Lamberts SW, Bons EG, Bruining HA, de Jong FH (1987) Differential effects of the imidazole derivatives etomidate, ketoconazole and miconazole and of metyrapone on the secretion of cortisol and its precursors by human adrenocortical cells. J Pharmacol Exp Ther 240:259–264

    CAS  PubMed  Google Scholar 

  38. Fragen RJ, Shanks CA, Molteni A, Avram MJ (1984) Effects of etomidate on hormonal responses to surgical stress. Anesthesiology 61:652–656

    Article  CAS  Google Scholar 

  39. Cuthbertson BH, Sprung CL, Annane D et al (2009) The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock. Intensive Care Med 35:1868–1876

    Article  CAS  Google Scholar 

  40. Fechner J, Ihmsen H, Jeleazcov C, Schuttler J (2009) Fospropofol disodium, a water-soluble prodrug of the intravenous anesthetic propofol (2,6-diisopropylphenol). Expert Opin Investig Drugs 18:1565–1571

    Article  CAS  Google Scholar 

  41. Struys MM, Fechner J, Schuttler J, Schwilden H (2010) Erroneously published fospropofol pharmacokinetic-pharmacodynamic data and retraction of the affected publications. Anesthesiology 112:1056–1057

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bayer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayer, A., Hornuß, C. (2019). Hypnotika in der Anästhesiologie: Barbiturate, Propofol, Etomidat. In: Rossaint, R., Werner, C., Zwißler, B. (eds) Die Anästhesiologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54507-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54507-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54505-8

  • Online ISBN: 978-3-662-54507-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics