Skip to main content

Penalized Independent Factor

  • Chapter
  • First Online:
Applied Quantitative Finance

Part of the book series: Statistics and Computing ((SCO))

  • 115k Accesses

Abstract

We propose a penalized independent factor (PIF) method to extract independent factors via a sparse estimation. Compared to the conventional independent component analysis, each PIF only depends on a subset of the measured variables and is assumed to follow a realistic distribution. Our main theoretical result claims that the sparse loading matrix is consistent. We detail the algorithm of PIF, investigate its finite sample performance and illustrate its possible application in risk management. We implement the PIF to the daily probability of default data from 1999 to 2013. The proposed method provides good interpretation of the dynamic structure of 14 economies’ global default probability from pre-Dot Com bubble to post-Sub Prime crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barndorff-Nielsen, O. (1997). Normal inverse gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics, 24, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.

    Article  Google Scholar 

  • Blæsild, P. (1999). Generalized hyperbolic and generalized inverse Gaussian distributions, Working Paper, University of Ă…rhus.

    Google Scholar 

  • Cardoso, J. F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE Proceedings F Radar and Signal Processing, 140, 362–370.

    Article  Google Scholar 

  • Chen, R. B., Chen, Y., & Härdle, W. K. (2014). TVICA Time varying independent component analysis and its application to financial data. Computational Statistics & Data Analysis, 74, 95–109.

    Article  MathSciNet  Google Scholar 

  • Comon, P. (1994). Independent component analysis, A new concept? Signal Processing, 36, 287–287. Higher Order Statistics.

    Google Scholar 

  • Duan, J. C., Sun, J., & Wang, T. (2012). Multiperiod corporate default prediction—A forward intensity approach. Journal of Econometrics, 170, 191–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  • Frank, L. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35, 109–135.

    Article  MATH  Google Scholar 

  • Gou, J., Zhao, Y., Wei, Y., Wu, C., Zhang, R., Qiu, Y., et al. (2014). Stability SCAD: A powerful approach to detect interactions in large-scale genomic study. BMC Bioinformatics, 133, 140–159.

    Google Scholar 

  • Hyvärinen, A. (1998). Analysis and projection pursuit. Advances in Neural Information Processing Systems, 10, 273.

    Google Scholar 

  • Hyvärinen, A. (1999a). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10, 626–634.

    Article  Google Scholar 

  • Hyvärinen, A. (1999b). The fixed-point algorithm and maximum likelihood estimation for independent component analysis. Neural Processing Letterss, 10, 1–5.

    Article  Google Scholar 

  • Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Networks, 9, 1483–1492.

    Google Scholar 

  • Hyvärinen, A., & Raju, K. (2002). Imposing sparsity on the mixing matrix in independent component analysis. Neurocomputing, 49, 151–162.

    Article  MATH  Google Scholar 

  • Jones, M. C., & Sibson, R. (1987). What is projection pursuit? Journal of the Royal Statistical Society. Series A (General), 24, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Karlis, D. (2002). An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution. Statistics & Probability Letters, 57, 43–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohavi, R., et al. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai, 14, 1137–1145.

    Google Scholar 

  • Li, K. C. (1987). Asymptotic optimality for Cp, CL, cross-validation and generalized cross-validation: discrete index set. The Annals of Statistics, 15, 958–975.

    Article  MathSciNet  MATH  Google Scholar 

  • Pham, D. T., & Garat, P. (1997). Blind separation of mixture of independent sources through a maximum likelihood approach. In Proceedings of EUSIPCO.

    Google Scholar 

  • Schwarz, G., et al. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58, 267–288.

    MathSciNet  MATH  Google Scholar 

  • Wang, H., Li, R., & Tsai, C. L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika, 94, 553–568.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, E. H., Philip, L. H., & Li, W. K. (2006). An independent component ordering and selection procedure based on the MSE criterion. Independent Component Analysis and Blind Signal Separation (pp. 286–294).

    Google Scholar 

  • Xie, H., & Huang, J. (2009). SCAD-penalized regression in high-dimensional partially linear models. The Annals of Statistics, 37, 673–696.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, K., Peng, H., Chan, L., & Hyvärinen, A. (2009). ICA with sparse connections: revisited. Independent component analysis and signal separation (pp. 195–202).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Chen .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Theorem 1

Proof

The explicit form of the density function \(g_j\) is not required, as long as the two conditions are fulfilled. Under condition C1 and C2, Equation \(\Vert \hat{B}-B\Vert =O_P(n^{-1/2}+a_n)\) is equivalent to proof that for any given \(\epsilon >0\), there exist a large C s.t.

$$\begin{aligned} P\{\sup _{\Vert u\Vert =C}Q(B+\alpha _nu)<Q(B)\}\ge 1-\epsilon \end{aligned}$$
(10.11)

where Q(B) is the penalized likelihood and u is a p-by-p matrix.

Let \(D_n(u)=Q(B+\alpha _nu)-Q(B)\)

\(I_u(B)=-E(tr(\nabla _Btr(\nabla \frac{1}{n}l(B)^{\top }u)^{\top }u))=-E(tr(\nabla _Bd_u\frac{1}{n}l(B)^{\top }u))>0\) for any \(y\in R^{p*p}\) based on condition (B)

If \(D_n(u)<0\) by choosing a sufficiently large C, then the proof is done.

$$\begin{aligned} D(u)&=l(B+\alpha _nu)-l(B)-n\sum \{\rho _{\lambda _n}(|B_{jk}+\alpha _nu_{jk}|)-\rho _{\lambda _n}(|B_{jk}|)\}\nonumber \\&\le l(B+\alpha _nu)-l(B)-n\sum _{B_{jk}\ne 0}\{\rho _{\lambda _n}(|B_{jk}+\alpha _nu_{jk}|)-\rho _{\lambda _n}(|B_{jk}|)\} \nonumber \\&\le \alpha _ntr(\nabla l(B)^{\top }u)+\frac{1}{2}\alpha _n^2tr(\nabla _Bd_ul(B)^{\top }u)\{1+o_P(1)\} \nonumber \\&-\sum _{B_{jk}\ne 0}[n\alpha _n\rho _{\lambda _n}^{'}(|B_{jk}|)sgn(B_{jk})u_{jk}+n\alpha _n^2\rho _{\lambda _n}^{''}(|B_{jk}|)u_{jk}^2\{1+o(1)\} \nonumber \\&\le \alpha _ntr(\nabla l(B)^{\top }u)-\frac{1}{2}n\alpha _n^2I_u(B)\{1+o_P(1)\} \nonumber \\&-\sum _{B_{jk}\ne 0}[n\alpha _n\rho _{\lambda _n}^{'}(|B_{jk}|)sgn(B_{jk})u_{jk}+n\alpha _n^2\rho _{\lambda _n}^{''}(|B_{jk}|)u_{jk}^2\{1+o(1)\} \end{aligned}$$
(10.12)

The first inequality is because \(\rho _{\lambda _n}(0)=0\) and \(\rho _{\lambda _n}(\beta )\ge 0\). The next inequality is Taylor expansion. Then substitute \(I_u(B)\) into the equation.

Base on condition (A), \(n^{-1/2}tr(\nabla l(B)^{\top }u)=O_P(1)\), thus the first term of (8) is of order \(O_P(n^{1/2}\alpha _n)=O_P(n\alpha _n^2)\). By choosing a sufficiently large C, the second term dominates the first term in \(\Vert u\Vert =C\).

The last term in (8) is bounded by

$$\begin{aligned} \sqrt{s}n\alpha _na_n\Vert u\Vert +n\alpha _n^2max\{\rho _{\lambda _n}^{''}(|B_{jk}|):B_{jk}\ne 0\}\Vert u\Vert ^2 \end{aligned}$$
(10.13)

The first part of (9) is dominated by the second term in (8) when choosing a sufficiently large C. The second term in (9) is also dominated by the second term in (8) as \(\max \{\rho _{\lambda _n}^{''}(|B_{jk}|):B_{jk}\ne 0\}\rightarrow 0\)

Proof is completed.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Chen, Y., Chen, R.B., He, Q. (2017). Penalized Independent Factor. In: Härdle, W., Chen, CH., Overbeck, L. (eds) Applied Quantitative Finance. Statistics and Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54486-0_10

Download citation

Publish with us

Policies and ethics