Skip to main content

Selected Applications

  • Chapter
  • First Online:
Vehicle Dynamics

Abstract

The constantly growing complexity of motor vehicles also in the field of driving dynamics makes the use of the vehicle dynamics simulation in an efficient development process indispensable. Next to the evaluation of basic driving characteristics such as comfort and stability, the simulation supports the design and application process of basic vehicle dynamics controllers such as the anti-lock braking system (ABS), drive slip control (ASR) or the electronic stability program (ESP) and advanced driving dynamics functions like e.g. Torque Vectoring (Rahimi Fetrati et al. 2016). It is the task of the simulation tool to map a vehicle in the computer in order to use it as a test environment in the controller application. This is exemplified in Sect. 14.1, on the three basic maneuvers of steering angle, stationary circular travel and double lane change. Three of the vehicle models described in Chaps. 10 and 11 are used. In addition, the vehicle dynamics simulation is also used in the development and application of passive safety systems such as the rollover detection (Sect. 14.2). A further application example is given by the regulation of the roll dynamics by active stabilizers in Sect. 14.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajluni KK (1989) Rollover Potential of Vehicles on Embankments, Sideslopes, and Other Roadside Features. PUBLIC ROADS 52. S 107–13

    Google Scholar 

  • Bardini R (2008) Auslegung von Überschlagschutzsystemen für Personenkraftwagen mithilfe der Simulation [Dr.-Ing.]. Dissertation, Universität Duisburg-Essen Düsseldorf: VDI-Verlag

    Google Scholar 

  • Bardini R, Nagelstraßer M and Wronn O (2007) Applikation, Test und Absicherung einer Überschlagsensorik am Beispiel des neuen BMW X5. VDI Bericht 2013. S 149–67

    Google Scholar 

  • Capustiac NA (2011) Development and application of smart actuation methods for vehicle simulators. Dissertation, Universität Duisburg-Essen

    Google Scholar 

  • Capustiac A, Banabic D, Schramm D, Ossendoth U (2011a) Motion cueing: from design until implementation. Proceedings of the Romanian Academy Series A—Mathematics Physics Technical Sciences Information Science 12(3):249–255

    Google Scholar 

  • Capustiac A, Hesse B, Schramm D, Banabic D (2011b) A human centered control strategy for a driving simulator. The International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS 11(01):45–52

    Google Scholar 

  • Coo PJAd, Wismans J and Niboer JJ (1991) Advances in MADYMO Crash Simulations. SAE Technical Paper 910879. S 135–46

    Google Scholar 

  • Donges E, Naab K (1996) Regelsysteme zur Fahrzeugführung und-stabilisierung in der Automobiltechnik. Automatisierungstechnik 44(5):226–236

    Google Scholar 

  • Harkey DL (1999) The Effect of Roadside Design on Rollover. In AE Passenger Car Rollover Toptec, San Diego, USA

    Google Scholar 

  • Hesse B (2011) Wechselwirkung von Fahrzeugdynamik und Kfz-Bordnetz unter Berücksichtigung der Fahrzeugbeherrschbarkeit

    Google Scholar 

  • Hiesgen G (2011) Effiziente Entwicklung eines menschzentrierten, integralen Querführungsassistenzsystems mit einem Fahrsimulator Dissertation

    Google Scholar 

  • ISO N (1975) TR 3888: Road vehicles-test procedure for a severe lanechange manœuvre. Genf: Intern. Organization for Standardization

    Google Scholar 

  • ISO D (1989) 7401: Lateral transient response test methods. In Deutsches Institut für Normung eV, Berlin (ed.)

    Google Scholar 

  • ISO (2000) ISO 3888-2: Passenger cars—Test track for a severe lane-change manoeuvre—Part 2: Obstacle avoidance.

    Google Scholar 

  • ISO_7401 (2003) Road vehicles—lateral transient response test methods—open loop test method. Genf, International Organisation for Standardisation

    Google Scholar 

  • ISO_4138 (2004) Passenger Cars—steady-state circular driving behaviour—open loop test methods. Genf, International Organisation for Standardisation

    Google Scholar 

  • Lich T, Breitmaier B (2003) Optimierte Überrollsensierung zur frühzeitigen Überschlagerkennung. Automotiv Electronics. Sonderausgabe ATZ/MTZ Automotiv Engineering Partners März 14

    Google Scholar 

  • Lunze J (2013) Regelungstechnik. Springer—ISBN 978-3-642-29532-4

    Google Scholar 

  • Maas N (2017) Konzeptionierung, Auslegung und Umsetzung von Assistenzfunktionen für die Übergabe der Fahraufgabe aus hochautomatisiertem Fahrbetrieb. Dr.-Ing. Dissertation, Universität Duisburg-Essen

    Google Scholar 

  • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies 7, —ISBN 0020-7373. S 1–13

    Google Scholar 

  • Mohamedshah Y, Council F (2007) Synthesis of Rollover Research

    Google Scholar 

  • Negele H-J (2007) Anwendungsgerechte Konzipierung von Fahrsimulatoren für die Fahrzeugentwicklung, Technische Universität München

    Google Scholar 

  • Otte DK, C (2005) Rollover accidents of cars in the German road traffic—an in-depth-analysis of injury and deformation pattern by GIDAS. In 19th International Technical Conference on the Enhanced Safety of Vehicles, Vol. Paper Number 05-0093, Washington, DC

    Google Scholar 

  • Öttgen O (2005) Zur modellgestützten Entwicklung eines mechatronischen Fahrwerkregelungssystems für Personenkraftwagen Dissertation, Universität Duisburg-Essen, Düsseldorf: VDI-Verlag

    Google Scholar 

  • Öttgen O, Bertram T (2003) Aktive Beeinflussung des Eigenlenk- und Wankverhaltens eines Pkws. Automatisierungstechnik 51

    Google Scholar 

  • Öttgen O, Bertram T (2004) Entwicklung eines Sollwertgenerators für fahrdynamische Regelungssysteme. VDI/VDE GMA Fachtagung Steuerung und Regelung von Fahrzeugen und Motoren, AutoReg 2004. VDI-Berichte. S 485–95

    Google Scholar 

  • Pattberg B (2005) Der Wirklichkeit Nahe: Autofahren in der Simulation—Assistenzfunktionen sicher und effizient erproben. Ignition: S. 60–63

    Google Scholar 

  • Proff H, Brand M, Mehnert K, Schmidt JA, Schramm D (2015) Elektrofahrzeuge für die Städte von morgen: Interdisziplinärer Entwurf und Test im DesignStudio NRW, Springer

    Google Scholar 

  • Rahimi Fetrati S, Teufel S, Schramm D (2016) Electrification of Torque-Vectoring system to improve the vehicle driving dynamics. 7th International Munich Chassis Symposium 2016, München

    Google Scholar 

  • Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE transactions on systems, man, and cybernetics (3):257–266

    Google Scholar 

  • Rau M (2007) Koordination aktiver Fahrwerk-Regelsysteme zur Beeinflussung der Querdynamik mittels Verspannungslenkung. Promotion, Stuttgart.

    Google Scholar 

  • Reński A (2001) Identification of driver model parameters. International Journal of occupational safety and ergonomics 7(1):79–92

    Google Scholar 

  • Stöbe M (2006) Die Fahrsimulatoren des DLR—Funktionen und Anwendungsmöglichkeiten Braunschweig, Deutsches Zentrum für Luft- und Raumfahrt e.V.

    Google Scholar 

  • Unbehauen H (2008) Regelungstechnik I: Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme, Fuzzy-Regelsysteme. Springer DE—ISBN 978-3-8348-9491-5

    Google Scholar 

  • Unterreiner M (2013) Modellbildung und Simulation von Fahrzeugmodellen unterschiedlicher Komplexität. Doktor Dissertation, Duisburg-Essen

    Google Scholar 

  • Unterreiner M, Schramm D, Ossendoth U (2013) Untersuchung des Immersionsgrades eines bewegten Fahrsimulators in Abhängigkeit der Fahrzeugmodellkomplexität. VDI VDE Mechatronik, RWTH Aachen University, Deutschland

    Google Scholar 

  • VDA (2006) VDA Spurwechseltest. (ed), Verband der Automobilindustrie e. V. (VDA)

    Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. Systems, Man and Cybernetics, IEEE Transactions on—ISBN 0018-9472. S 28–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Schramm .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Schramm, D., Hiller, M., Bardini, R. (2018). Selected Applications. In: Vehicle Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54483-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54483-9_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54482-2

  • Online ISBN: 978-3-662-54483-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics