Advertisement

Sekundäre Pflanzenstoffe in Lebensmitteln

  • Claus Leitzmann
Chapter

Zusammenfassung

Die Wirkungen von Heilpflanzen, Gewürzen, Tees und Lebensmitteln werden in der Naturheilkunde seit der Antike genutzt. Mit der Entwicklung hochempfindlicher Analysemethoden konnte eine Vielzahl organischer Moleküle identifiziert werden, die als bioaktive Substanzen bezeichnet werden. Diese Pflanzenstoffe können je nach Dosierung gesundheitsfördernde oder gesundheitsschädigende Wirkungen haben. Zunächst wurden diese Wirkungen in Zell- und Gewebekulturen sowie Tiermodellen untersucht. Inzwischen liegen zahlreiche epidemiologische Daten vor, die auf das umfangreiche Gesundheitspotenzial der sekundären Pflanzenstoffe beim Menschen hinweisen.

Literatur

  1. Aune D, Chan DS, Vieira AR et al.: Dietary compared with blood concentrations of carotenoids and breast cancer risk: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 96: 356–373 (2012)CrossRefGoogle Scholar
  2. Bohn T, McDougall J, Alegria A et al.: Mind the gap – deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites – a position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 59: 1307–1323 (2015)CrossRefGoogle Scholar
  3. Borlinghaus J, Albrecht F, Gruhlke MC et al.: Allicin: chemistry and biological properties. Molecules 19: 12591–12618 (2014)CrossRefGoogle Scholar
  4. Crowell P: Prevention and therapy of cancer by dietary monoterpenes. Nutr 129:775–778 (1999)CrossRefGoogle Scholar
  5. Dinkova-Kostova AT, Kostov RV: Glucosinolates and isothiocyanates in health and disease. Trends Molecular Med 18: 337–347 (2012)CrossRefGoogle Scholar
  6. Eliassen AH, Liao X, Rosner B et al.: Plasma carotenoids and rsik of breast cancer over 20 y of follow-up. Am J Clin Nutr 101: 1197–1205 (2015)CrossRefGoogle Scholar
  7. Ellwood K, Balantine DA, Dwyer JT et al.: Considerations on an approach for establishing a framework for bioactive food components. Adv Nutr 5: 693–701 (2014)CrossRefGoogle Scholar
  8. Fleischauer AT, Arab L: Garlic and cancer: a critical review of the epidemiologic literature. J Nutr 131: 1032S–1040S (2001)CrossRefGoogle Scholar
  9. Friedman M: Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. J Agric Food Chem 62: 6025–6042 (2014)CrossRefGoogle Scholar
  10. Gupta C, Prakash D: Phytonutrients as therapeutic agents. J Complement Integr Med 11:151–169 (2014)CrossRefGoogle Scholar
  11. Gylling H, Plat J, Turley S et al.: Plant sterols and plant stanols in the management of dyslipidemia and prevention of cardiovascular diseases. Atherosclerosis 232: 346–360 (2014)CrossRefGoogle Scholar
  12. Hayes JD, Kelleher MO, Eggleston IM: The cancer chemopreventive actions of phytochemicals derived from glucosinolates Eur J Nutr 47: Suppl 2: 73–88 (2008)CrossRefGoogle Scholar
  13. Holden JM, Eldridge AL, Beecher et al.: Carotinoid content of U.S. foods: an update of the data base. J Food Comp Anal 12: 169–196 (1999)CrossRefGoogle Scholar
  14. Hubbard GP, Wolffram S, de Vos R et al.: Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated activation pathway in man. Brit J Nutr 96:482–488 (2006)PubMedGoogle Scholar
  15. Ivey KL, Hodgson JM, Croft KD et al.: Flavonoid intake and all-cause mortality. Am J Clin Nutr 101: 1012–1020 (2015)CrossRefGoogle Scholar
  16. Jiang W, Wei H, He B: Dietary flavonoids intake and the risk of coronary heart disease: a dose-response meta-analysis of 15 prospective studies. Thrombosis Research 135: 459–463 (2015)CrossRefGoogle Scholar
  17. Johnson E: Role of lutein and zeaxanthin in visual and cognitive function throughout lifespan. Nutr Reviews 72: 605–612 (2014)CrossRefGoogle Scholar
  18. Kushad MM, Brown AF, Kurilich AC et al.: Variations of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548 (1999)CrossRefGoogle Scholar
  19. Leclerq G, Jacquot Y: Interactions of isoflavones and other plant derived estrogens with estrogen receptors for prevention and treatment of breast cancer – considerations concerning related efficacy and safety. J Steroid Biochem Molecular Biol 139: 237–244 (2014)CrossRefGoogle Scholar
  20. Leenders M, Leufkens AM, Siersma PD et al.: Plasma and dietary carotenoids and vitamins A, C and E and risk of colon and rectal cancer in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 135: 2930–2939 (2014)CrossRefGoogle Scholar
  21. Leoncini E, Nedovic D, Panic N et al.: Carotenoid Intake from natural sources and head and neck cancer: A systematic review and meta-analysis of epidemiological studies. Cancer Epidemiol Biomarkers Prev 24:1003–1011 (2015)CrossRefGoogle Scholar
  22. Li YH, Niu YB, Sun Y et al.: Role of phytochemicals in colorectal cancer prevention. World J Gastroenterol 21: 9262–9272 (2015)CrossRefGoogle Scholar
  23. Liu XH, Yu RB, Liu R et al.: Association between lutein and zeaxanthin status and the risk of cataract: a meta-analysis. Nutrients 6: 452–465 (2014a)CrossRefGoogle Scholar
  24. Liu YJ, Zhan J, Liu XL et al.: Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr 33: 59–63 (2014b)CrossRefGoogle Scholar
  25. Manach C, Scalbert A, Morand C et al.: Food sources and bioavailability. Am J Clin Nutr 79:727–747 (2004)CrossRefGoogle Scholar
  26. Messina M: Soy foods, isoflavones, and the health of postmenopausal women. AJCN 100 (Suppl): 423S–430S (2014)CrossRefGoogle Scholar
  27. Mourouti N, Kontogianni MD, Papavagelis C, Panagiotakos DB: Diet and breast cancer: a systematic review. Int J Food Sci Nutr 66: 1–42 (2015)CrossRefGoogle Scholar
  28. Mithen RE, Dekker M, Verkerk R et al.: The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sc Food Agric 80:967–984 (2000)CrossRefGoogle Scholar
  29. Nurk E, Refsum H, Drevon CA et al.: Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J Nutr 139: 120–127 (2009)CrossRefGoogle Scholar
  30. Oakenfull D, Potter JD: Determination of the saponin content of foods. In: Spiller GA (ed.), Handbook of dietary fiber in human nutrition. CRC Press, Boca Raton, pp. 549–560 (1986)Google Scholar
  31. Penalvo JL, Lopez-Romero P: Urinary enterolignan concentrations are positively associated with serum HDL cholesterol and negatively associated with serum triglycerides in US adults. J Nutr 142: 751–756 (2012)CrossRefGoogle Scholar
  32. Phillips KM, Ruggio DM, Ashraf-Khorassani M: Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agri Food Che 53: 9436–9445 (2005)CrossRefGoogle Scholar
  33. Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM et al.: A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients 7: 5177–5216 (2015)CrossRefGoogle Scholar
  34. Reinli K, Block G: Phytoestrogen content of foods – a compendium of literature values. Nutr Cancer 26: 123–148 (1996)CrossRefGoogle Scholar
  35. Roleira FM, Tavares-da-Silva EJ, Varela CL et al.: Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem 15: 183: 235–258 (2015)CrossRefGoogle Scholar
  36. Sluijs I, Cadier E, Beulens JW et al.: Dietary intake of carotenoids and the risk of type 2 diabetes. Nutr Metabol & Cardiovasc Dis 25: 376–381 (2015)CrossRefGoogle Scholar
  37. Soni M, Rahardjo TB, Soekardi R et al.: Phytoestrogens and cognitive function: a review. Maturitas 77: 209–230 (2014)CrossRefGoogle Scholar
  38. Taku K, Melby MK, Nishi N et al.: Soy isoflavones for osteoporosis: an evidence-based approach. Maturitas 70: 333–338 (2011)CrossRefGoogle Scholar
  39. Tetens I, Turrini A, Tapanainen H, Christensen T: Dietary intake and main sources of plant lignans in 5 European countries. Food Nutr Res. 57:  https://doi.org/10.3402/fnr.v57i0.19805 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wallace TC, Blumberg JB, Johnson EJ, Shao A: Dietary bioactives: establishing a scientific framework for recommended intakes. Adv Nutr 15: 1–4 (2015)CrossRefGoogle Scholar
  41. Wang X, Jiang C, Zhang Y et al.: Role of lutein supplementation in the management of age-related macular degeneration: meta-analysis of randomized controlled trials. Ophthalmic Res 52: 198–205 (2014a)CrossRefGoogle Scholar
  42. Wang X, Ouyang YY, Liu J, Zhao G et al.: Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. Brit J Nutr 111: 1–11 (2014b)CrossRefGoogle Scholar
  43. Wang ZM, Zhao D, Nie ZL et al.: Flavonol intake and stroke-risk: a meta-analysis of cohort studies. Nutrition 30: 518–523 (2015)CrossRefGoogle Scholar
  44. Watzl B, Leitzmann C: Bioaktive Substanzen in Lebensmitteln. 3. Aufl. Hippokrates, Stuttgart (2005)Google Scholar
  45. Wei P, Liu M, Chen Y et al.: Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pacific J Tropical Med 5: 243–248 (2012)CrossRefGoogle Scholar
  46. Woodside JV, McGrath AJ, Lyner N et al.: Carotenoids and health in older people. Maturitas, 80, 63–68 (2015)CrossRefGoogle Scholar
  47. Yuan G, Wahlqvist ML, He G et al.: Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr 15: 143–152 (2006)PubMedGoogle Scholar
  48. Zhang PY, Xu X, Li XC: Cardiovascular diseases: oxidative damage and antioxidant protection. Eur Rev Med Pharmacol Sci 18: 3091–3096 (2014)PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Claus Leitzmann
    • 1
  1. 1.LaubachDeutschland

Personalised recommendations