Very high cycle fatigue

Chapter

Zusammenfassung

In vielen Anwendungsbereichen werden Bauteile und Strukturen mit mehr als 107 Lastwechseln belastet. Beispielsweise sind Radsatzwellen und Eisenbahnräder innerhalb von wenigen Jahren nicht selten 109 Lastwechseln ausgesetzt. Auch Helikoptergetriebe haben nach einer Lebensdauer von 5000 h 109 und mehr Lastwechsel [4-1]. Bei diesen hohen Lastwechselzahlen ist die seit den Untersuchungen von Wöhler definierte Langzeitfestigkeitsgrenze bei N = 106 - 107 Lastwechseln nicht immer gegeben, wie zahlreiche Untersuchungen in der Literatur zeigen (z.B. [4-2 bis 4-7]).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [4-1] Shaniavski; S.: Crack growth in the gigacycle fatigue regime for helicopter gears. In: Fatigue & Fracture of Engineering Materials & Structures (22), 1999, no 7, pp. 609–619Google Scholar
  2. [4-2] Bathias, C.: Damage Mechanisms in gigacycle fatigue. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  3. [4-3] Bathias, C.; Drouillac, L.; Le François, P.: How and why the fatigue S–N curve does not approach a horizontal asymptote. In: Intern. J. Fatigue (23), 2001, pp. 143–151Google Scholar
  4. [4-4] Marines, I.; Bin, X.; Bathias, C.: An understanding of very high cycle fatigue of metals. In: Intern. J. Fatigue (25), 2003, no 9-11, pp. 1101–1107Google Scholar
  5. [4-5] Mughrabi, H.: Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. In: Intern. J. Fatigue (28), 2006, no 11, pp. 1501–1508Google Scholar
  6. [4-6] Murakami, Y.: Metal Fatigue: Effects of small defects and non-metallic inclusions. Elsevier, London, 2002Google Scholar
  7. [4-7] Nishijima, S.; Kanazawa, K.: Stepwise S-N curve and fish-eye failure in gigacycle fatigue. In: Fatigue & Fracture of Engineering Materials & Structures (22), 1999, no 7, pp. 601–607Google Scholar
  8. [4-8] Bathias, C.: There is no infinite fatigue life in metallic materials. In: Fatigue & Fracture of Engineering Materials & Structures (22), 1999, no 7, pp. 559–565Google Scholar
  9. [4-9] Murakami, Y.; Nomoto, T.; Ueda, T.: On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1: influence of hydrogen trapped by inclusions. In: Fatigue & Fracture of Engineering Materials & Structures (23), 2000, no 11, pp. 893–902Google Scholar
  10. [4-10] Sakai, T.; Sato, Y.; Oguma, N.: Characteristic S-N properties of highcarbon-chromium-bearing steel under axial loading in long-life fatigue. In: Fatigue & Fracture of Engineering Materials & Structures (25), 2002, no 8-9, pp. 765–773Google Scholar
  11. [4-11] Mughrabi, H.: On ‘multi-stage’ fatigue life diagrams and the relevant lifecontrolling mechanisms in ultrahigh-cycle fatigue. In: Fatigue & Fracture of Engineering Materials & Structures (Vol. 25), 2002, pp. 755–764Google Scholar
  12. [4-12] Lukás, P.; Kunz, L.: Specific features of high-cycle and ultra-high-cycle fatigue. In: Fatigue & Fracture of Engineering Materials & Structures (25), 2002, no 8-9, pp. 747–753Google Scholar
  13. [4-13] Mughrabi, H.: On the life-controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime. In: Fatigue & Fracture of Engineering Materials & Structures (22), 1999, no 7, pp. 633–641Google Scholar
  14. [4-14] Mughrabi, H.: Fatigue mechanisms in the ultrahigh cycle regime. In: CDROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  15. [4-15] Nakasone, Y.; Hara, H.: FEM simulation of growth of fish-eye cracks in the very high cycle fatigue of a high strength steel SUJ2. In: Sakai, T.; Ochi, Y. (Eds.): Proceedings of the Third International Conference of Very High Cycle Fatigue, VHCF-3, The Society of Materials Science Japan, Kyōto, 2004, S. 40–47Google Scholar
  16. [4-16] Pyttel, B.; Schwerdt, D.; Berger, C.: Very high cycle fatigue – Is there a fatigue limit? In: Intern. J. Fatigue (33), 2011, 1, pp. 49–58Google Scholar
  17. [4-17] Bayraktar, E.; Garcias, I.; Bathias, C.: Failure mechanisms of automotive metallic alloys in very high cycle fatigue range. In: Intern. J. Fatigue (28), 2006, no 11, pp. 1590–1602Google Scholar
  18. [4-18] Sander, M.; Müller, T.; Lebahn, J.: Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in VHCF regime. In: Intern. J. Fatigue (62), 2014, pp. 10–20Google Scholar
  19. [4-19] Murakami, Y.; Nagata, J.; Matsunga, H.: Factors affecting ultralong life fatigue and design method for components. In: CD-ROM-Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  20. [4-20] Murakami, Y.; Matsunaga, H.: The effect of hydrogen on fatigue properties of steels used for fuel cell system. In: Intern. J. Fatigue (28), 2006, no 11, pp. 1509–1520Google Scholar
  21. [4-21] Sakai, T.; et al.: Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading. In: Intern. J. Fatigue (28), 2006, no 11, pp. 1547–1554Google Scholar
  22. [4-22] Shiozawa, K.; Morii, Y.; Nishino, S.; Lu, L.: Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. In: Intern. J. Fatigue (28), 2006, no 11, pp. 1521–1532Google Scholar
  23. [4-23] Murakami, Y.; Yokoyama, N. N.; Nagata, J.: Mechanism of fatigue failure in ultralong life regime. In: Fatigue & Fracture of Engineering Materials & Structures (25), 2002, no 8-9, pp. 735–746Google Scholar
  24. [4-24] Sakai, T.; Oguma, N.; Morikawa, A.: Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue. In: Fatigue & Fracture of Engineering Materials & Structures (38), 2015, no 11, pp. 1305–1314Google Scholar
  25. [4-25] Hong Y, Liu X, Lei Z, Sun C: The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels. In: Intern. J. Fatigue (89), 2016, pp. 110–118Google Scholar
  26. [4-26] Stäcker, C.; Sander, M.: Elastic-plastic simulations on crack closure behavior in VHCF regime. In: Proc. of VHCF 7, Dresden, 2017Google Scholar
  27. [4-27] Ritz, T.; Stäcker, C.; Beck, T.; Sander, M.: FGA-formation mechanism for X10CrNiMoV12-2-2 and 34CrNiMo6 for constant and variable amplitude tests under the influence of applied mean loads. In: Fatigue & Fracture of Engineering Materials & StructuresGoogle Scholar
  28. [4-28] Stäcker, C.; Sander, M.: Experimental, analytical and numerical analyses of constant and variable amplitude loadings in the very high cycle fatigue regime. In: Theoretical and Applied Fracture Mechanics (92), 2017, pp. 394–409Google Scholar
  29. [4-29] Neuber, H.: Kerbspannungslehre - Theorie der Spannungskonzentration; genaue Berechnung der Festigkeit. Springer, Berlin, 1985Google Scholar
  30. [4-30] Pilkey, W. D.; Pilkey, D. F.; Peterson, R. E.: Peterson’s stress concentration factors. John Wiley & Sons Inc, Hoboken, New Jersey, 2008Google Scholar
  31. [4-31] Murakami, Y.; Endo, M.: Effects of defects, inclusions and inhomogeneities on fatigue strength. In: Intern. J. Fatigue (16), 1994, no 3, pp. 163–182Google Scholar
  32. [4-32] Murakami, Y.; Nomoto, T.; Ueda, T.: Factors influencing the mechanism of superlong fatigue failure in steels. In: Fatigue & Fracture of Engineering Materials & Structures (22), 1999, no 7, pp. 581–590Google Scholar
  33. [4-33] Murakami, Y.: Mechanism of fatigue failure in ultralong life regime and application to fatigue design. In: Blom, A. F. (Ed.): Fatigue 2002, Proc. of the Eighth Intern. Fatigue Congress, EMAS, 2002, S. 2927–2938Google Scholar
  34. [4-34] Pippan, R.; Stuwe, H.; Golos, K.: A comparison of different methods to determine the threshold of fatigue crack propagation. In: Intern. J. Fatigue (16), 1994, no 8, pp. 579–582Google Scholar
  35. [4-35] Pippan, R.; Tabernig, B.; Gach, E.; Riemelmoser, F.: Non-propagation conditions for fatigue cracks and fatigue in the very high-cycle regime. In: Fatigue & Fracture of Engineering Materials & Structures (25), 2002, no 8-9, pp. 805–811Google Scholar
  36. [4-36] Ritchie, R. O.; Davidson, D. L.; Boyce, B. L., Campbell, J. P.; Roder, O.: High-cycle fatigue of Ti-6Al-4V. In: Fatigue & Fracture of Engineering Materials & Structures (22), 1999, no 7, pp. 621–631Google Scholar
  37. [4-37] Grad, P.; et al.: Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels. In: Scripta Materialia, 2012, no 67, pp. 838–841Google Scholar
  38. [4-38] Tanaka, K.; Akiniwa, Y.: Resistance-curve method for predicting propagation threshold of short fatigue cracks at notches. In: Engineering Fracture Mechanics (30), 1988, no 6, pp. 863–876Google Scholar
  39. [4-39] Tanaka, K.; Akiniwa, Y.: Mechanics of small fatigue crack propagation -Mechanics, mechanisms, and applications. In: Ravichandran, K. S.; Ritchie, R. O.; Murakami, Y. (Eds.): Small fatigue cracks, Elsevier, Amsterdam, New York, 1999, S. 59–71Google Scholar
  40. [4-40] Tabernig, B.; Pippan, R.: Determination of the length dependence of the threshold for fatigue crack propagation. In: Engineering Fracture Mechanics (69), 2002, no 8, pp. 899–907Google Scholar
  41. [4-41] Sakai, T.; et al.: Experimental evidence of duplex S-N characteristics in wide life region for high strength steels. In: Wu, X. R.; Wang, Z. G. (Eds.): Fatigue ´99, Higher Education Press, EMAS, Bejing, 1999, S. 573–578Google Scholar
  42. [4-42] Tanaka, K.; Akiniwa, Y.: Fatigue crack propagation behaviour derived from S-N data in very high cycle regime. In: Fatigue & Fracture of Engineering Materials & Structures (25), 2002, no 8-9, pp. 775–784Google Scholar
  43. [4-43] Sakai, T.; Takaeda, M.; Oguma, N.: Effect of strength level on fatigue property of several structural steels in ultra-wide life region. In: Blom, A. F. (Ed.): Fatigue 2002, Proc. of the Eighth Intern. Fatigue Congress, EMAS, 2002, S. 2987–2994Google Scholar
  44. [4-44] Makino, T.: The effect of forging ratio and metal flow direction on very high-cycle fatigue properties of steel bars. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  45. [4-45] Shiozawa, K.; Lu, L.: Very high-cycle fatigue behaviour of shot-peened high-carbon-chromium bearing steel. In: Fatigue & Fracture of Engineering Materials & Structures (25), 2002, no 8-9, pp. 813–822Google Scholar
  46. [4-46] Akiniwa, Y.; Miyamoto, N.; Tsuru, H.; Tanaka, K.: Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime. In: Intern. J. Fatigue (28), 2006, no 11, pp. 1555–1565Google Scholar
  47. [4-47] Sander, M.; Stäcker, C.; Müller, T.: Experimental and numerical investigations on crack initiation and crack growth under constant and variable amplitude loadings in the VHCF regime. In: Christ, H.-J. et al. (eds.): Fatigue of Materials at Very High Numbers of Loading Cycles - Experimental Techniques - Mechanisms - Modeling and Fatigue Life Assessment, Springer Spektrum ResearchGoogle Scholar
  48. [4-48] Müller, T.; Sander, M.: Investigation of Variable Amplitude Loading and Stress Ratio in the Very High Cycle Fatigue Regime Using Micronotched Specimens. In: Procedia Engineering (101), 2015, pp. 322–329Google Scholar
  49. [4-49] Müller, T.: Einfluss variable Amplitudenbelastungen auf die Rissinitiierung und das Risswachstum im Bereich sehr hoher Lastwechselzahlen. Dissertation, Universität Rostock, 2016Google Scholar
  50. [4-50] Sander, M.; Müller, T.; Stäcker, C.: Very high cycle fatigue behavior under constant and variable amplitude loading. In: Structural Integrity Procedia (2), 2016, pp. 34–41Google Scholar
  51. [4-51] Mayer, H.; Stojanovic, S.; Ede, C.; Zettl, B.: Beitrag niedriger Lastamplituden zur Ermüdungsschädigung von 0,15 %C Stahl. In: Materialwissenschaft und Werkstofftechnik (38), 2007, no 8, pp. 581–590Google Scholar
  52. [4-52] Marines-Garcia, I.; et al.: Fatigue crack growth from small to large cracks in gigacycle fatigue with fish-eye failures. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  53. [4-53] Marines-Garcia, I.: persönliche Mitteilung, 2006Google Scholar
  54. [4-54] Paris, P. C.; Marines-Garcia, I.; Hertzberg, R. W.; Donald, J. K.: The relationship of effective stress intensity, elastic modulus and burgers-vector on fatigue crack growth as associated with “fish-eye” gigacycle fatigue phenomena. In: Sakai, T.; Ochi, Y. (Eds.): Proceedings of the Third International Conference of Very High Cycle Fatigue, VHCF-3, The Society of Materials Science Japan, Kyōto, 2004, S. 1–13Google Scholar
  55. [4-55] Hertzberg, R. W.: A simple calculation of da/dN-ΔK data in the near threshold regime and above. In: Intern. J. Fracture (64), 1993, no 3, R53-R58Google Scholar
  56. [4-56] Paris, P. C.; Tada, H.; Donald, J. K.: Service load fatigue damage? a historical perspective. In: Intern. J. Fatigue (21), 1999, S35–S46Google Scholar
  57. [4-57] Omata, S.; Matsushita, H.; Kobayashi, H.: Ultra-high-cycle-fatigue property of forged low-alloy steel for ships´ crankshaft. In: Blom, A. F. (Ed.): Fatigue 2002, Proc. of the Eighth Intern. Fatigue Congress, EMAS, 2002, S. 2979–2986Google Scholar
  58. [4-58] Harlow, D. G.; Wei, R. P.; Sakai, T.; Oguma, N.: Crack growth based probability modeling of S–N response for high strength steel. In: Intern. J. Fatigue (28), 2006, no 11, pp. 1479–1485Google Scholar
  59. [4-59] Shiozawa, K.; Murai, M.; Shimatani, Y.; Yoshimoto, T.: Transition of fatigue failure mode of Ni–Cr–Mo low-alloy steel in very high cycle regime. In: Intern. J. Fatigue (32), 2010, no 3, pp. 541–550Google Scholar
  60. [4-60] Li, W.; et al.: Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel. In: Intern. J. Fatigue (32), 2010, no 7, pp. 1096–1107Google Scholar
  61. [4-61] Lai, J.; et al.: The fatigue limit of bearing steels – Part I - A pragmatic approach to predict very high cycle fatigue strength. In: Intern. J. Fatigue (38), 2012, pp. 155–168Google Scholar
  62. [4-62] Murakami, Y.; Norikura, T.; Yasuda, T.: Stress intensity factors for a penny-shaped crack emanating from an ellipsoidal cavity. In: Trans JSME (48), 1982, pp. 1558–1565Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Universität RostockRostockDeutschland

Personalised recommendations