Advertisement

Zusammenwirken von Betriebsfestigkeit und Bruchmechanik bei der Lebensdauervorhersage

  • Manuela Sander
Chapter

Zusammenfassung

Wie in Abbildung 1.1 dargestellt, setzt sich die Lebensdauer eines Bauteils aus der Rissinitiierungs- und der Rissfortschrittsphase zusammen. Für eine genaue Lebensdauervorhersage ist deshalb neben der Modellierung des Langrisswachstums (s. Kap. 2.5) auch der Prozess der Rissinitiierung und des Kurzrisswachstums von entscheidender Bedeutung. Darüber hinaus ist ebenfalls wichtig, die Beziehung von kurzen und langen sowie von nicht-wachsenden Rissen grundlegend zu verstehen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 3

  1. [3-1] Bathias, C.: Damage Mechanisms in gigacycle fatigue. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  2. [3-2] Tokaji, K.; Ogawa, T.: The growth behaviour of microstructurally small fatigue cracks in metals. In: Miller, K. J.; de los Rios, E. R. (Eds.): Short Fatigue Crack Growth, Mechanical Engineering Publications,, London, 1992, S. 85–99Google Scholar
  3. [3-3] Socie, D. F.; Marquis, G. B.: Multiaxial Fatigue. SAE International, Warrendale, PA, 2000Google Scholar
  4. [3-4] Rodopoulos, C. A.; de los Rios, E. R.: Theoretical analysis on the behaviour of short fatigue cracks. In: Intern. J. Fatigue (24), 2002, no 7, pp. 719–724Google Scholar
  5. [3-5] Ritchie, R. O.: Small crack growth and the fatigue of traditional and advanced materials. In: Wu, X. R.; Wang, Z. G. (Eds.): Fatigue ´99, Higher Education Press, EMAS, Bejing, 1999, S. 3–14Google Scholar
  6. [3-6] Davidkov, A.; Pippan, R.: Studies on short fatigue crack propagation through a ferrite-pearlite microstructure. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  7. [3-7] Düber, O.; et al.: Short Crack Propagation in Duplex Stainless Steel. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Altanta, 2006Google Scholar
  8. [3-8] Kujawski, D.; Ellyin, F.: A microsturally motivated model for short crack growth rate. In: Miller, K. J.; de los Rios, E. R. (Eds.): Short Fatigue Crack Growth, Mechanical Engineering Publications,, London, 1992, S. 391–405Google Scholar
  9. [3-9] Anthes, R. J.: Ein neuartiges Kurzrißfortschrittsmodell zur Anrißlebensdauervorhersage bei wiederholter Beanspruchung. Veröffentlichung des Instituts für Stahlbau und Werkstoffmechanik der Technischen Universität Darmstadt, Darmstadt, Heft 57, 1997Google Scholar
  10. [3-10] Newman, J. C.: Application of small-crack theory to aircraft materials - Mechanics, mechanisms, and applications. In: Ravichandran, K. S.; Ritchie, R. O.; Murakami, Y. (Eds.): Small fatigue cracks, Elsevier, Amsterdam, New York, 1999, S. 431–442Google Scholar
  11. [3-11] Ravichandran, K. S.; Larsen, J. M.; Li, X.-D.: Significance of crack shape or aspect ratio to the behaviour of small fatigue cracks in titanium alloys - Mechanics, mechanisms, and applications. In: Ravichandran, K. S.; Ritchie, R. O.; Murakami, Y. (Eds.): Small fatigue cracks, Elsevier, Amsterdam, New York, 1999, S. 95–108Google Scholar
  12. [3-12] Radaj, D.: Notch stress intensity approach – fundamentals and application to welded joints. In: Internal Report 1/2005, Universität Padova, 2005, S. 1–36Google Scholar
  13. [3-13] Hoffmeyer, J.: Anrisslebensdauervorhersage bei mehrachsiger Beanspruchung auf Basis des Kurzrisskonzepts. Veröffentlichung des Instituts für Stahlbau und Werkstoffmechanik der Technischen Universität Darmstadt, Darmstadt, Heft 72, 2005Google Scholar
  14. [3-14] Radaj, D.: Ermüdungsfestigkeit: Grundlagen für Leichtbau,. Springer-Verlag, Berlin, 2003Google Scholar
  15. [3-15] Forth, S. C.; Newman, J.; Forman, R. G.: On generating fatigue crack growth thresholds. In: Intern. J. Fatigue (25), 2003, 1, pp. 9–15Google Scholar
  16. [3-16] Atzori, B.; Lazzarin, P.; Meneghetti, G.: A unified treatment of the mode I fatigue limit of components containing notches or defects. In: Intern. J. Fracture (133), 2005, 1, pp. 61–87Google Scholar
  17. [3-17] Kitagawa, H.; Takahashi, S.: Applicability of fracture mechanics to very small cracks or the cracks in the early stage. In: Proc. of the 2nd International Conference on Mechanical Behavior of Materials, Boston, 1976, S. 627–631Google Scholar
  18. [3-18] El Haddad, M. H.; Topper, T. H.; Smith, K. N.: Prediction of non propagating cracks. In: Engineering Fracture Mechanics (11), 1979, no 3, pp. 573–584Google Scholar
  19. [3-19] Atzori, B.; Meneghetti, G.; Susmel, L.: Material fatigue properties for assessing mechanical components weakend by notches and defects. In: Fatigue & Fracture of Engineering Materials & Structures (28), 2005, pp. 83–97Google Scholar
  20. [3-20] Larsen, J. M.; et al.: The role of near-threshold small-crack behaviour in life prediction of titanium alloys for use in advanced turbine engines - Mechanics, mechanisms, and applications. In: Ravichandran, K. S.; Ritchie, R. O.; Murakami, Y. (Eds.): Small fatigue cracks, Elsevier, Amsterdam, New York, 1999, S. 131–142Google Scholar
  21. [3-21] Atzori, B.: Notch sensitivity and defect sensitivity under fatigue loading: two sides of the same medal. In: Intern. J. Fracture (107), 200, L3-L8Google Scholar
  22. [3-22] Atzori, B.; Lazzarin, P.; Meneghetti, G.: Fracture mechanics and notch sensitivity. In: Fatigue & Fracture of Engineering Materials & Structures (26), 2003, no 3, pp. 257–267Google Scholar
  23. [3-23] Atzori, B.; Lazzarin, P.; Meneghetti, G.: Estimation of fatigue limits of sharply notched components. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  24. [3-24] Atzori, B.; Lazzarin, P.: A three-dimensional graphical aid to analyse fatigue crack nu-cleation and propagation phases under fatigue limit conditions. In: Intern. J. Fracture (118), 2002, pp. 271–284Google Scholar
  25. [3-25] Lukás, P.; Kunz, L.; Weiss, B.; Stickler, R.: Non-damaging notches in fatigue. In: Fatigue & Fracture of Engineering Materials & Structures (9), 1986, no 3, pp. 195–204Google Scholar
  26. [3-26] Taylor, D.: Geometrical effects in fatigue: a unifying theoretical model. In: Intern. J. Fatigue (21), 1999, no 5, pp. 413–420Google Scholar
  27. [3-27] Taylor, D.: Size effect in fatigue from notches. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  28. [3-28] Taylor, D.; Wang, G.: The validation of some methods of notch fatigue analysis. In: Fatigue & Fracture of Engineering Materials & Structures (23), 2000, no 5, pp. 387–394Google Scholar
  29. [3-29] Taylor, D.; Wang, G.: Component design: the interface between threshold und endurance limit. In: Newman, J. C. Jr.; Piascik, R. S. (Eds.): Fatigue Crack Growth Threshold, Endurance Limits and Design, ASTM STP 1372, Bd. 201, ASTM, West Conshocken, 2000, S. 361–373Google Scholar
  30. [3-30] Fujimoto, Y.; Hamada, K.; Shintaku, E.; Pirker, G.: Inherent damage zone model for strength evaluation of small fatigue cracks. In: Engineering Fracture Mechanics (68), 2001, no 4, pp. 455–473Google Scholar
  31. [3-31] Neuber, H.: Kerbspannungslehre - Theorie der Spannungskonzentration - Genaue Berechnung der Festigkeit. Springer-Verlag, Berlin, 1985Google Scholar
  32. [3-32] Livieri, P.; Tovo, R.: Fatigue limit evaluation of notches, small cracks and defects: an engineering approach. In: Fatigue & Fracture of Engineering Materials & Structures (27), 2004, no 11, pp. 1037–1049Google Scholar
  33. [3-33] Susmel, L.; Taylor, D.: On the use of the theory of critical distances to estimate fatigue strength of notched components in the medium-cycle fatigue regime. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  34. [3-34] Tanaka, K.; Akiniwa, Y.: Notch-geometry effect on propagation threshold of short fatigue cracks in notched components. In: Ritchie, R. O.; Starke, E. A. (Eds.): Fatigue ´87, EMAS, West Midlands, 1987, S. 739–748Google Scholar
  35. [3-35] Tanaka, K.; Akiniwa, Y.: Mechanics of small fatigue crack propagation - Mechanics, mechanisms, and applications. In: Ravichandran, K. S.; Ritchie, R. O.; Murakami, Y. (Eds.): Small fatigue cracks, Elsevier, Amsterdam, New York, 1999, S. 59–71Google Scholar
  36. [3-36] Tanaka, K.; Nakai, Y.: Propagation and non-propagation of short fatigue cracks at a sharp notch. In: Fatigue & Fracture of Engineering Materials & Structures (6), 1983, no 4, pp. 315–327Google Scholar
  37. [3-37] Pippan, R.: Short cracks: A problem for the life-time prediction. In: CDROM Proceedings of 22nd CAD-FEM Users´ Meeting, 2004Google Scholar
  38. [3-38] Pippan, R.; Stuwe, H.; Golos, K.: A comparison of different methods to determine the threshold of fatigue crack propagation. In: Intern. J. Fatigue (16), 1994, no 8, pp. 579–582Google Scholar
  39. [3-39] Tabernig, B.; Pippan, R.: Determination of the length dependence of the threshold for fatigue crack propagation. In: Engineering Fracture Mechanics (69), 2002, no 8, pp. 899–907Google Scholar
  40. [3-40] Tabernig, B.; Powell, P.; Pippan, R.: Resistance curves for the threshold of fatigue crack propagation in particle reinforced aluminium alloys. In: Newman, J. C. Jr.; Piascik, R. S. (Eds.): Fatigue Crack Growth Threshold, Endurance Limits and Design, ASTM STP 1372, Bd. 201, ASTM, West Conshocken, 2000, S. 96–108Google Scholar
  41. [3-41] Akiniwa, Y.; Tanaka, K.: Prediction of initiation and propagation thresholds of fatigue cracks in notched components. In: Blom, A. F. (Ed.): Fatigue 2002, Proc. of the Eighth Intern. Fatigue Congress, EMAS, 2002, S. 1207–1214Google Scholar
  42. [3-42] Tanaka, K.; Akiniwa, Y.: Resistance-curve method for predicting propagation threshold of short fatigue cracks at notches. In: Engineering Fracture Mechanics (30), 1988, no 6, pp. 863–876Google Scholar
  43. [3-43] Chapetti, M.: Fatigue propagation threshold of short cracks under constant amplitude loading. In: Intern. J. Fatigue (25), 2003, no 12, pp. 1319–1326Google Scholar
  44. [3-44] Lukás, P.; Klesnil, M.: Fatigue limit of notched bodies. In: Materials Science and Engineering (34), 1978, 1, pp. 61–66Google Scholar
  45. [3-45] Yates, J. R.; Brown, M. W.: Prediction of the length of non-propagating fatigue cracks. In: Fatigue & Fracture of Engineering Materials & Structures (10), 1987, no 3, pp. 187–201Google Scholar
  46. [3-46] Wingenbach, M.: Lebensdauervorhersage scharf gekerbter Bauteile – Ein Beitrag zur Erweiterung der schadenstoleranten Bauteilauslegung, Universität Paderborn, Dissertation, 1994Google Scholar
  47. [3-47] Murakami, Y.: Metal Fatigue: Effects of small defects and non-metallic inclusions. Elsevier, London, 2002Google Scholar
  48. [3-48] Murakami, Y.; Endo, M.: Effects of Hardness and Crack Geometries on DKth of Small Cracks Emanating from Small Defects - EGF Pub. 1. In: Miller, K. J.; de los Rios, E. R. (Eds.): The Behaviour of Short Fatigue Cracks, Mechanical Engineering Publications,, London, 1986, S. 275–293Google Scholar
  49. [3-49] Murakami, Y.; Nomoto, T.; Ueda, T.: Factors influencing the mechanism of superlong fatigue failure in steels. In: Fatigue & Fracture of Engineering Materials & Structures (22), 1999, no 7, pp. 581–590Google Scholar
  50. [3-50] Hobson, P. D.; Brown, M. W.; de los Rios, E. R.: Two Phases of Short Crack Growth in a Medium Carbon Steel - EGF Pub. 1. In: Miller, K. J.; de los Rios, E. R. (Eds.): The Behaviour of Short Fatigue Cracks, Mechanical Engineering Publications,, London, 1986, S. 441–459Google Scholar
  51. [3-51] Park, J.; et al.: A microstructural model for predicting high cycle fatigue life of steels. In: Intern. J. Fatigue (27), 2005, no 9, pp. 1115–1123Google Scholar
  52. [3-52] Navarro, A.; de los Rios, E. R.: A microstructurally-short fatigue crack growth equation. In: Fatigue & Fracture of Engineering Materials & Structures (11), 1988, no 5, pp. 383–396Google Scholar
  53. [3-53] Tanaka, K.; Akiniwa, Y.; Nakai, Y.; Wei, R. P.: Modelling of small fatigue crack growth interacting with grain boundary. In: Engineering Fracture Mechanics (24), 1986, no 6, pp. 803–819Google Scholar
  54. [3-54] Turnbull, A.; de los Rios, E. R.: Predicting fatigue life in commercially pure aluminium using a short crack growth model. In: Fatigue & Fracture of Engineering Materials & Structures (18), 1995, no 12, pp. 1469–1481Google Scholar
  55. [3-55] Vallellano, C.; Mariscal, M. R.; Navarro, A.; Dominguez, J.: A micromechanical approach to fatigue in small notches. In: Fatigue & Fracture of Engineering Materials & Structures (28), 2005, no 11, pp. 1035–1045Google Scholar
  56. [3-56] de los Rios, E. R.; Navarro, A.; Hussain, K.: Microstructural Variations in Short Fatigue Crack Propagation of a C-Mn Steel. In: Miller, K. J.; de los Rios, E. R. (Eds.): Short Fatigue Crack Growth, Mechanical Engineering Publications,, London, 1992, S. 115–132Google Scholar
  57. [3-57] Navarro, A.; de los Rios, E. R.: Short and long fatigue crack growth: A unified model. In: Philosophical Magazine A (57), 1988, 1, pp. 15–36Google Scholar
  58. [3-58] Andersson, J.: The influence of grain size variation on metal fatigue. In: Intern. J. Fatigue (27), 2005, pp. 847–852Google Scholar
  59. [3-59] Hussain, K.; de los Rios, E.R.; Navarro, A.: A two-stage micromechanics model for short fatigue cracks. In: Engineering Fracture Mechanics (44), 1993, no 3, pp. 425–436Google Scholar
  60. [3-60] Shyam, A.; Jones, J. W.; Allison, J. E.: On small fatigue crack growth in structural materials. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  61. [3-61] Bjerkén, C.; Melin, S.: Propagation of a short fatigue crack modelled by a boundary element approach. In: Blom, A. F. (Ed.): Fatigue 2002, Proc. of the Eighth Intern. Fatigue Congress, EMAS, 2002, S. 2053–2060Google Scholar
  62. [3-62] Motoyasiki, Y, Sugeta, A.; Uematsu, Y, Jono, M.: Discrete dislocation analysis of cyclic plastic deformation near growing fatigue crack tip. In: Blom, A. F. (Ed.): Fatigue 2002, Proc. of the Eighth Intern. Fatigue Congress, EMAS, 2002, S. 991–998Google Scholar
  63. [3-63] Riemelmoser, F. O.; Pippan, R.; Stüwe, H. P.: A comparison of a discrete dislocation model and a continuous description of cyclic crack tip plasticity. In: Intern. J. Fracture (85), 1997, no 2, pp. 157–168Google Scholar
  64. [3-64] Beretta, S.; Carboni, M.; Madia, M.: Modelling of short crack fatigue thresholds by a strip-yield model. In: CD-ROM Proc. of 9th Intern. Fatigue Congress, Atlanta, 2006Google Scholar
  65. [3-65] Newman, J.; Philipps, E. P.; Swain, M. H.: Fatigue-life prediction methodology using small-crack theory. In: Intern. J. Fatigue (21), 1999, no 2, pp. 109–119Google Scholar
  66. [3-66] Newman, J. C.; et al.: Small-crack growth and fatigue life predictions for high-strength aluminium alloys. Part II: crack closure and fatigue analyses. In: Fatigue & Fracture of Engineering Materials & Structures (23), 2000, pp. 59–72Google Scholar
  67. [3-67] Panasyuk, V. V.; Andreykiv, O. Y.; Ritchie, R. O.; Darchuk, O. I.: Estimation of the ef-fects of plasticity and resulting crack closure during small fatigue crack growth. In: Intern. J. Fracture (107), 2001, pp. 99–115Google Scholar
  68. [3-68] Akiniwa, Y.; Tanaka, K.; Kimura, H.: Microstructural effects on crack closure and propagation thresholds of small fatigue cracks. In: Fatigue & Fracture of Engineering Materials & Structures (24), 2001, pp. 817–829Google Scholar
  69. [3-69] Tanaka, K., Akiniwa, Y.; Kimura, H.: Roles of microstructural barriers and crack closure in arresting small fatigue cracks at fatigue thresholds. In: Blom, A. F. (Ed.): Fatigue 2002, Proc. of the Eighth Intern. Fatigue Congress, EMAS, 2002, S. 1151–1162Google Scholar
  70. [3-70] Tanaka, K.; Nakai, Y.; Yamashita, M.: Fatigue growth threshold of small cracks. In: Intern. J. Fracture (17), 1981, pp. 519–526Google Scholar
  71. [3-71] Vormwald, M.: Lebensdauervorhersagen verbessern. In: Materialprüfung (45), 2003, pp. 92–99Google Scholar
  72. [3-72] Ishihara, S.; McEvily, A. J.: Analysis of small fatigue-crack growth under two-step loading conditions - Mechanics, mechanisms, and applications. In: Ravichandran, K. S.; Ritchie, R. O.; Murakami, Y. (Eds.): Small fatigue cracks, Elsevier, Amsterdam, New York, 1999, S. 389–401Google Scholar
  73. [3-73] Ishihara, S.; McEvily, A. J.: An analysis of the rate of growth of small fatigue cracks. In: Blom, A. F. (Ed.): Fatigue 2002, Proc. of the Eighth Intern. Fatigue Congress, EMAS, 2002, S. 1981–1988Google Scholar
  74. [3-74] McEvily, A. J.; Yang, Z.: An Analysis of the Rate of Growth of Short Fatigue Cracks. In: Miller, K. J.; de los Rios, E. R. (Eds.): Short Fatigue Crack Growth, Mechanical Engineering Publications,, London, 1992, S. 439–448Google Scholar
  75. [3-75] Caton, M. J.; Jones, J. W.; Allison, J. E.: A study of small fatigue crack growth in cast aluminium and prediction of fatigue properties - Mechanics, mechanisms, and applications. In: Ravichandran, K. S.; Ritchie, R. O.; Murakami, Y. (Eds.): Small fatigue cracks, Elsevier, Amsterdam, New York, 1999, S. 155–166Google Scholar
  76. [3-76] Nisitani, H.; Goto, M.: A Small-Crack Growth Law and its Application to the Evaluation of Fatigue Life - EGF Pub. 1. In: Miller, K. J.; de los Rios, E. R. (Eds.): The Behaviour of Short Fatigue Cracks, Mechanical Engineering Publications,, London, 1986, S. 461–478Google Scholar
  77. [3-77] Caton, M. J.; Jones, J. W.; Allison, J. E.: Use of Small Fatigue Crack Growth Analysis in Predicting the S-N Response of Cast Aluminum Alloys. In: Newman, J. C. Jr.; Piascik, R. S. (Eds.): Fatigue Crack Growth Threshold, Endurance Limits and Design, ASTM STP 1372, Bd. 201, ASTM, West Conshocken, 2000, S. 285–303Google Scholar
  78. [3-78] Sadananda, K.; Vasudevan, A. K.: Short crack growth and internal stresses. In: Intern. J. Fatigue (19), 1997, no 93, pp. 99–108Google Scholar
  79. [3-79] Sadananda, K.; Vasudevan, A. K.: Analysis of small crack growth behavior using unified approach - Mechanics, mechanisms, and applications. In: Ravichandran, K. S.; Ritchie, R. O.; Murakami, Y. (Eds.): Small fatigue cracks, Elsevier, Amsterdam, New York, 1999, S. 73–83Google Scholar
  80. [3-80] Vormwald, M.: Anrisslebensdauervorhersage auf der Basis der Schwingbruchmechanik für kurze Risse. Veröffentlichung des Instituts für Stahlbau und Werkstoffmechanik der Technischen Hochschule Darmstadt, Darmstadt, Heft 47, 1989Google Scholar
  81. [3-81] Dowling, N. E.: J-Integral estimates for cracks in infinite bodies. In: Engineering Fracture Mechanics (26), 1987, no 3, pp. 333–348Google Scholar
  82. [3-82] Newman, J. C.: A crack opening stress equation for fatigue crack growth. In: Intern. J. Fracture (24), 1984, no 4, R131-R135Google Scholar
  83. [3-83] Vormwald, M.; Heuler, P.; Krae, C.: Spectrum Fatigue Life Assessment of Notched Specimens Using a Fracture Mechanics Based Approach - Testing and analysis. In: Amzallag, C. (Ed.): Automation in fatigue and fracture - ASTM STP, Bd. 1231, ASTM, Philadelphia, PA, 1994, S. 221–240Google Scholar
  84. [3-84] Savaidis, G.: Berechnung der Bauteilanrißlebensdauer bei mehrachsigen proportionalen Beanspruchungen. Veröffentlichung des Instituts für Stahlbau und Werkstoffmechanik der Technischen Universität Darmstadt, Darmstadt, Heft 54, 1995Google Scholar
  85. [3-85] Blom, A. F.; et al.: Short fatigue crack growth behaviour in Al 2024 and Al 7475 - EGF Pub. 1. In: Miller, K. J.; de los Rios, E. R. (Eds.): The Behaviour of Short Fatigue Cracks, Mechanical Engineering Publications,, London, 1986, S. 37–66Google Scholar
  86. [3-86] El Haddad, M. H.; Smith, K. N.; Topper, T. H.: Fatigue Crack Propagation of Short Cracks. In: Journal of Engineering Materials and Technology (101), 1979, 1, pp. 42–46Google Scholar
  87. [3-87] Laue, S.: Experimentelle und theoretische Untersuchungen zur Ausbreitung kurzer Ermüdungsrisse in gekerbten Proben des Stahls CM15. Shaker Verlag, Aachen, 2004Google Scholar
  88. [3-88] Laue, S.; Bomas, H.: Spectrum fatigue life assessment of notched specimens based on the initiation and propagation of short cracks. In: Intern. J. Fatigue (28), 2006, no 9, pp. 1011–1021Google Scholar
  89. [3-89] Laue, S.; Bomas, H.; Mayr, P.: Prediction of Fatigue Lifetime under Multilevel Cyclic Loading Based on a Short Crack Growth Model in a Low Carbon Steel SAE 1017. In: Steel Research (745), 2003, pp. 498–503Google Scholar
  90. [3-90] Karolczuk, A.; Macha, E.: Critical Planes in Multiaxial Fatigue of Materials. In: Reihe 18. VDI-Verlag, Düsseldorf, 2005Google Scholar
  91. [3-91] Jiang, Y.: A Continuum Mechanics Approach for Crack Initiation and Crack Growth Predictions. In: Materialwissenschaft und Werkstofftechnik (37), 2006, no 9, pp. 738–746Google Scholar
  92. [3-92] Jiang, Y.; Feng, M.: Modeling of Fatigue Crack Propagation. In: Journal of Engineering Materials and Technology (126), 2004, 1, pp. 77Google Scholar
  93. [3-93] Jiang, Y.: A fatigue criterion for general multiaxial loading. In: Fatigue & Fracture of Engineering Materials & Structures (23), 2000, 1, pp. 19–32Google Scholar
  94. [3-94] Ciavarella, M.; Monno, F.: On the possible generalizations of the Kitagawa–Takahashi diagram and of the El Haddad equation to finite life. In: Intern. J. Fatigue (28), 2006, no 12, pp. 1826–1837Google Scholar
  95. [3-95] Pugno, N.; Cornetti, P.; Carpinteri, A.: New unified laws in fatigue: From the Wöhler’s to the Paris’ regime. In: Engineering Fracture Mechanics (74), 2007, no 4, pp. 595–601Google Scholar
  96. [3-96] Rodopoulos, C. A.; Choi, J.-H.; de los Rios, E. R.; Yates, J. R.: Stress ratio and the fatigue damage map—Part I: Modelling. In: Intern. J. Fatigue (26), 2004, no 7, pp. 739–746Google Scholar
  97. [3-97] Rodopoulos, C. A.; de los Rios, E. R.; Levers, A.; Yates, J. R.: A fatigue damage map for 2024-T3 aluminium alloy. In: Fatigue & Fracture of Engineering Materials & Structures (26), 2003, pp. 569–575Google Scholar
  98. [3-98] Zenner, H.; Liu, J.: Vorschlag zur Verbesserung der Lebensdauerabschätzung nach dem Nennspannungskonzept. In: Konstruktion (44), 1992, pp. 9–17Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Universität RostockRostockDeutschland

Personalised recommendations