Skip to main content

Automated handling of high-temperature thermoplastic Carbon Fiber materials for a large-scale production

  • Conference paper
  • First Online:
  • 2330 Accesses

Abstract

The structural and mechanical advantages of Carbon fiber reinforced composites (CFRC) lead to an increasing demand of Carbon fiber products. This class of materials is gaining widespread acceptance in various fields like aviation, wind energy or especially automotive and is gradually replacing traditional lightweight construction materials such as high-strength steel or aluminum. Currently, particular process steps of the production of fiber composite structures are performed manually or semiautomatically. Especially the automated handling of semi-finished products consisting of unstable textile poses a challenge for an economical manufacturing. Due to the manifold advantages of thermoplastic composites and the challenges concerning the processing, the paper presents the conception for the automated handling of high-temperature thermoplastic semi-finished products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. M. Neitzel, P. Mitschang, and U. Breuer, “Manual composites, materials, processing, application”, Carl Hanser, Munich, 2014.

    Google Scholar 

  • 2. Acmite Market Intelligence; “Global Carbon Fiber Composite Market”, Watwill, Switzerland, 2014.

    Google Scholar 

  • 3. R. Heuss, “Lightweight, heavy impact; How carbon fiber and other lightweight materials will develop across industries and specifically in automotive”; Advanced Industries; McKinsey & Company, 2012.

    Google Scholar 

  • 4. H. Schuermann, “Designing with fiber-plastic composites”, Springer, Berlin, 2005.

    Google Scholar 

  • 5. Lien TK, Davis PG (2008) “A novel gripper for limb materials based on lateral Coanda ejectors”. Ann CIRP 57:33–36

    Google Scholar 

  • 6. Saadat M, Nan P (2002) “Industrial applications of automatic manipulation of flexible materials”. Ind Robot Int J 29(5):434–443

    Google Scholar 

  • 7. Seliger G, Szimmat F, Niemeier J, Stephan J (2003) “Automated handling of non-rigid parts”. Ann CIRP 52(1):21–24

    Google Scholar 

  • 8. G. Reinhart, G. Strasser, “Flexible gripping technology for the automated handling of limp technical textiles in composites industry”. Production Engineering 5, pp. 301-306, 2011.

    Google Scholar 

  • 9. G. Reinhart, C Ehinger, “Robot-based automation system for the flexible preforming of single-layer cut-outs in composite industry”, German Academic Society for Production Engineering WGP, Heidelberg, 2014.

    Google Scholar 

  • 10. Großmann K, Muehl A, Loeser M, Cherif C, Hoffmann G, Torun A (2010) “New solutions for the manufacturing of spacer preforms for thermoplastic textilereinforced lightweight structures”. Prod Eng 4:589–597

    Google Scholar 

  • 11. Kordi MT, Huesing M, Corves B (2007) “Development of a multifunctional robot end-effector system for automated manufacture of textile preforms”. (Hrsg.): IEEE/Asme international conference on advanced intelligent mechatronics: IEEE 2008. ISBN: 978-1-4244-1263-1

    Google Scholar 

  • 12. Greb C, Schnabel A, Gries T, Kruse F (2010) “Development of new preforming processes for high performance fibre-reinforced plastic (FRP) components”. Sampe J 5:42–51

    Google Scholar 

  • 13. Brecher C, Emonts M (2011) „Automatisierte Handhabung für die FVKGroßserienproduktion“. In: 17. Nationales Symposium SAMPE Deutschland e. V. (Hrsg.): Faserverbundwerkstoffe 2011

    Google Scholar 

  • 14. P. Giliard, J. Graf, M. Jelinek, „Efficient production of fiber composite components by Automation”, Internationales Forum Mechatronik, IMS Institut für Mechatronische Systeme, Winterthur, 2013.

    Google Scholar 

  • 15. J. Naegele, J. Graf, G. Reinhart, „Bewertung von Prozessketten der thermoplastischen CFK“, Leightweight Design, Volume 8, Issue 6, pp 50–55, Konstruktion und Entwicklung, 2015

    Google Scholar 

  • 16. Dieffenbacher GmbH, „Maschinen- und Anlagenbau, Fiberforge RELAY Station“, http://www.dieffenbacher.de/upload/teaser/Flyer/, Eppingen, 2014, Lightweighting your world

  • 17. Coriolis Composites, “Robotized fiber placement technology”, http://www.coriolis-composites.com/products.html, Quéven, 2017

  • 18. Hesse, S.: Greifertechnik; „Effektoren für Roboter und Automaten“. München: Hanser, Carl. 2011. 300 S. ISBN: 978-3-446-42422-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Graf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this paper

Cite this paper

Graf, J., Richter, C., Reinhart, G. (2017). Automated handling of high-temperature thermoplastic Carbon Fiber materials for a large-scale production. In: Schüppstuhl, T., Franke, J., Tracht, K. (eds) Tagungsband des 2. Kongresses Montage Handhabung Industrieroboter. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54441-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54441-9_20

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54440-2

  • Online ISBN: 978-3-662-54441-9

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics