Skip to main content

Lexicographic Approach Based on Evidence Theory for Blood Cell Image Segmentation

  • Chapter
  • First Online:
Metaheuristics for Medicine and Biology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 704))

  • 549 Accesses

Abstract

The analysis of microscope cell blood images can provide useful information concerning health of patients; the main different components of blood are White Blood Cells (WBCs), Red Blood Cells (RBCs) and platelets. When a disease and foreign materials infect human bodies, the number of WBCs increases to respond and defend infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Angulo, D. Jeulin, Stochastic watershed segmentation, in Proceedings of the 8th International Symposium on Mathematical Morphology (ISMM’2007) (2007), pp. 265–276

    Google Scholar 

  2. A. Appriou, Multisensor signal processing in the framework of the theory of evidence, Application of Mathematical Signal Processing Techniques to Mission Systems, vol. 216, NATO/RTO - Lecture Series (1999), pp. 5–31

    Google Scholar 

  3. I. Baghli, A. Nakib, E. Sellam, M. Benazzouz, A. Chikh, E. Petit, Hybrid framework based on evidence theory for blood cell image segmentation, in Proceedings of the SPIE 9038, Medical Imaging 2014, San Diego, (USA), 15–19 Feb 2014. doi:10.1117/12.2042142

  4. S. Ben Chaabane, M. Sayadi, F. Fnaiech, E. Brassart, Dempster-shafer evidence theory for image segmentation: application in cells images. Int. J. Inf. Commun. Eng. 5(2), 126–132 (2009)

    Google Scholar 

  5. T. Denoeux, A k-nearest neighbor classification rule based on dempster-shafer theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–813 (1995)

    Article  Google Scholar 

  6. L.R. Dice, Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  7. L.B. Dorini, R. Minetto, N.J. Leite, White blood cell segmentation using morphological operators and scale-space analysis, in Proceedings of the 20th Brazilian Symposium Computer Graphics Image Processing (2007), pp. 100–107 (2007)

    Google Scholar 

  8. L.B. Dorini, R. Minetto, N.J. Leite, Semiautomatic white blood cell segmentation based on multiscale analysis. IEEE J. Biomed. Health Inform. 17(1), 250–256 (2013)

    Article  Google Scholar 

  9. O. Dzyubachyk, W.A. Van Cappellen, J. Essers, W.J. Niesen, E. Meijering, Advanced level-set based cell tracking in time-lapse fluorescence microscopy. IEEE Trans. Med. Imaging 29(3), 852–867 (2010)

    Article  Google Scholar 

  10. W. Gao, Y. Tang, X. Li, Segmentation of microscopic images for counting leukocytes, in Proceedings of the 2nd International Conference on Bio-informatics and Biomedical Engineering (ICBBE’08) (Shangai, China, 2008), pp. 2609–2612

    Google Scholar 

  11. M. Ghosh, D. Das, S. Mandal, C. Chakraborty, M. Pal, A.K. Maity, S.K. Pal, A.K. Ray, Statistical pattern analysis of white blood cell nuclei morphometry, in Proceedings of the 2010 IEEE Students Technology Symposium, IIT Kharagput, pp. 59–66, 3–4 April 2010

    Google Scholar 

  12. S. Glenn, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)

    MATH  Google Scholar 

  13. J.W. Guan, D.A. Bell, Evidence Theory and Its Applications (North-Holland, New York, 1991)

    MATH  Google Scholar 

  14. D.-C. Huang, K.-D. Hung, Y.-K. Chan, A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images. J. Syst. Softw. 85, 2104–2118 (2012)

    Article  Google Scholar 

  15. P. Jaccard, Etude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la sociÈtÈ Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  16. M. Kaur, G. Jindal, Medical image segmentation using marker controlled watershed transformation. IJCST 2(4), 548–551 (2011)

    Google Scholar 

  17. B.C. Ko, J.-W. Gim, J.-Y. Nam, Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake. Micron 42, 695–705 (2011)

    Article  Google Scholar 

  18. A. Koschan, A. Mongi, Digital Color Image Processing (Wiley, New York, 2008)

    Book  Google Scholar 

  19. O. Lezoray, Supervised automatic histogram clustering and watershed segmentation. Application to microscopic medical color images. Image Anal. Stereol. 22, 113–120 (2003)

    Google Scholar 

  20. T. Markiewicz, S. Osowski, B. Marianska, L. Moszczynski, Automatic recognition of the blood cells of myelogenous leukemia using SVM, in Proceedings of the IEEE International Joint Conference on Neural Networks. IJCNN’05, vol. 4 (IEEE, 2005), pp. 2496–2501

    Google Scholar 

  21. T. Markiewicz, S. Osowski, B. Mariańska, White blood cell automatic counting system based on support vector machine, Adaptive and Natural Computing Algorithms (Springer, Berlin, 2007), pp. 318–326

    Google Scholar 

  22. E. Meijering, Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29(5), 140–145 (2012)

    Article  Google Scholar 

  23. L.H. Nee, M.Y. Mashor, R. Hassan, White blood cell segmentation for acute leukemia bone marrow images, in International Conference on Biomedical Engineering (ICoBE’12), Penang, Malaysia, pp. 357–361, 27–28 Feb 2012

    Google Scholar 

  24. J.B. Nemane, V.A. Chakkarwar, A novel method of white blood cell segmentation and counting. Int. J. Adv. Comput. Eng. Commun. Technol. 1(1), 44–49 (2012)

    Google Scholar 

  25. R. Nisha, D. Bryan, E. Salama Mohammed, T. Tasdizen, Isolation and two-step classification of normal white blood cells in peripheral blood smears. J. Pathol. Inform. 3(1), 13 (2012)

    Google Scholar 

  26. A. Rakar, D. Juricic, P. BallÈ, Transferable belief model in fault diagnosis. Eng. Appl. Artif. Intell. 12, 555–567 (1999)

    Article  Google Scholar 

  27. S.H. Rezatofighi, H. Soltanian-Zadeh, Automatic recognition of five types of white blood cells in peripheral blood. Comput. Med. Imaging Graph. 35, 333–343 (2011)

    Article  Google Scholar 

  28. F. Sadeghian, Z. Seman, A.R. Ramli, B.H. Abdul Kahar, M.I. Saripan, A framework for white blood cell segmentation in microscopic blood images using digital image processing. Biol. Proced. Online 11(1), 196–206 (2009)

    Google Scholar 

  29. S.S. Savkare, S.P. Narote, Automatic system for classification of erythrocytes infected with malaria and identification of parasite’s life stage, in Procedia Technology: 2nd International Conference on Communication, Computing and Security (ICCCS’12) (2012) pp. 405–410

    Google Scholar 

  30. J.M. Sharif, M.F. Miswan, M.A. Ngadi, M.S.H. Salam, M.M.B.A. Jamil, Red blood cell segmentation using masking and watershed algorithm: a preliminary study, in Proceedings of ICoBE, Penang, Malaysia, pp. 258–262, 27–28 Feb 2012

    Google Scholar 

  31. H. Tulsani, S. Saxena, N. Yadav, Segmentation using morphological watershed transformation for counting blood cells. Int. J. Comput. Appl. Inf. Technol. 2(3), 28–36 (2013)

    Google Scholar 

  32. L. Vincent, P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1991)

    Article  Google Scholar 

  33. W. Wang, H. Song, Q. Zhao, A modified watersheds image segmentation algorithm for blood cell. Int. Conf. Commun. Circuits Syst. Proc. 1, 450–454 (2006)

    Google Scholar 

  34. Q. Wu, F.A. Merchant, K.R. Castleman, Microscopic Image Processing (Academic Press, Burlington, 2008)

    Google Scholar 

  35. F. Yi, I. Moon, B. Javidi, D. Boss, P. Marquet, Automated segmentation of multiple red blood cells with digital holographic microscopy. J. Biomed. Opt. 18 (2013). doi:10.1117/1.JBO.18.2.026006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Nakib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Baghli, I., Nakib, A. (2017). Lexicographic Approach Based on Evidence Theory for Blood Cell Image Segmentation. In: Nakib, A., Talbi, EG. (eds) Metaheuristics for Medicine and Biology. Studies in Computational Intelligence, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54428-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54428-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54426-6

  • Online ISBN: 978-3-662-54428-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics