Skip to main content

Microscopic Image Segmentation Based on Based Branch and Bound and Game Theory

  • Chapter
  • First Online:
Metaheuristics for Medicine and Biology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 704))

  • 540 Accesses

Abstract

In this work a new family of image segmentation algorithms is proposed. This paper is a generalization of the model proposed, called: Power Watershed segmentation framework. Indeed, we extended it for cases: \(2< q < \inf \) and \(p \rightarrow \inf \). To do so, we explore the segmentation a new formulation of the segmentation problem based on game theory is proposed optimization energy function as a game theory problem. In this new formulation, The minimization can be, then, optimization process is seen as a search of the Nash equilibrium of a non-cooperative strategic game. Indeed, the computation of Nash equilibrium in finite game is equivalent to a non linear optimization problem afterward. As the optimization problem thus formulated the computation of the Nash equilibrium is an NP-hard problem, then, we propose the use of the Branch and Bound method is used to solve it to find it in reasonable time. In this study moreover, the uniqueness of the Nash equilibrium is demonstrated using a potential game-theoretic approach. Then we propose a new family of segmentation approach with \(2< q < \inf \)and \(p \rightarrow \inf \), named Game-based PW. The obtained results of the proposed approach, show are better than those given by the original Power Watershed \(q = 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.V. Alvino, G.B. Unal, G.G. Slabaugh, B. Peny, T. Fang, Efficient segmentation based on Eikonal and diffusion equations. Int. J. Comput. Math. 84(9), 1309–1324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. X. Bai, G. Sapiro, A geodesic framework for fast interactive image and video segmentation and matting, in Proceedings of IEEE International Conference on Computer Vision (ICCV), Rio de Janiero, 14–21 October 2007, pp. 18

    Google Scholar 

  3. G. Bertrand, On topological watersheds. J. Math. Imaging Vis. 22(2–3), 217–230 (2005)

    Article  MathSciNet  Google Scholar 

  4. Y. Boykov, M.P. Jolly, Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images, in Proceedings of IEEE International Conference on Computer Vision (ICCV), Vancouver, BC, USA, vol. 1, 7–14 July 2001, pp. 105–112

    Google Scholar 

  5. O. Carbonell-Nicolau, R.P. McLean, Refinements of Nash equilibrium in potential games. Theor. Econ. 9, 555–582 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cell database: http://www.cellimagelibrary.org/

  7. A. Chakraborty, J.S. Duncan, Game-theoretic integration for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 21(1), 12–30 (1999)

    Article  Google Scholar 

  8. B. Chatterjee, An optimization formulation to compute Nash equilibrium in finite games, in International Conference on Methods and Models in Computer (ICM2CS 2009), Delhi, India, 14–15 December 2009, pp. 1–5

    Google Scholar 

  9. R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, S.W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. 102(21), 7426–7431 (2005)

    Article  Google Scholar 

  10. V. Conitez, T. Sandholm, New complexity results about Nash equilibria. Games Econ. Behavior 63, 621–641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Couprie, L.J. Grady, L. Najman, H. Talbot, Power watershed: a unifying graph-based optimization framework. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1384–1399 (2011)

    Article  Google Scholar 

  12. J. Cousty, G. Bertrand, L. Najman, M. Couprie, Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2009)

    Article  Google Scholar 

  13. J. Cousty, G. Bertrand, L. Najman, M. Couprie, Watershed cuts: thinnings, shortest path forests, and topological watersheds. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 925–939 (2010)

    Article  Google Scholar 

  14. A. Criminisi, T. Sharp, A. Blake, Geos: geodesic image segmentation, in Proceedings of the 10th European Conference on Computer Vision ECCV 08: Part I, Marseille, France, 12–18 October 2008, pp. 99–112

    Google Scholar 

  15. O. Duchenne, J.-Y. Audibert, R. Keriven, J. Ponce, F. Sgonne, Segmentation by transduction, in Proceedings of IEEE Conference in Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  16. A.X. Falcao, J. Stolfi, R. de Alencar Lotufo, The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 1929 (2004)

    Article  Google Scholar 

  17. D. Fotaskis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis, The structure and complexity of Nash equilibria for a selfish routing game. Theor. Comput. Sci. 410, 3305–3326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Gendron, T.G. Crainic, Parallel Branch and Bound algorithms: survey and synthesis. Oper. Res. 42, 1042–1066 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Gilboa, E. Zemmel, Nash and correlated equilibria: some complexity consideration. Games Econ. Behavior 1, 80–93 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. L.J. Grady, Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  21. L.J. Grady, J.R. Polimeni, Discrete Calculus: Applied Analysis on Graphs for Computational Science (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  22. M. Kallel, R. Aboulaich, A. Habbal, M. Moakher, A Nash-game approach to joint image restoration and segmentation. Appl. Math. Model. 38, 3038–3053 (2014)

    Article  MathSciNet  Google Scholar 

  23. E.L. Lawler, D.W. Wood, Branch-and-Bound methods: a survey. Oper. Res. 14, 699–719 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Li, G. Zeng, R. Gan, H. Zha, L. Wang, A game-theoretical approach to image segmentation, Computational Visual Media, vol. 7633, Lecture Notes in Computer Science (Springer, Berlin, 2012), pp. 33–42

    Chapter  Google Scholar 

  25. R.D. McKelvey, A Liapunov function for Nash equilibria, Technical Report, California Institute of Technology (1991)

    Google Scholar 

  26. J.D. Molina, H. Rudnick, Transmission expansion investments: cooperative or non cooperative game?, in General Meeting of Power and Energy Society 2010, Minneapolis, MN, USA, 25–29 July 2010, pp. 1–7

    Google Scholar 

  27. D. Monderer, L.S. Shapley, Potential games. Games Econ. Behavior 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Najman, M. Schmitt, Watershed of a continuous function. Signal Process. 38(1), 99–112 (1994)

    Article  Google Scholar 

  29. J.F. Nash, Noncooperative games. Ann. Math. 54, 289–295 (1951)

    Article  MathSciNet  Google Scholar 

  30. J. Nossak, E. Pesch, A branch-and-bound algorithm for acyclic partitioning problem. Comput. Oper. Res. 44, 174–184 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. M.J. Osborne, A. Rubinstein, A Course in Game Theory (The MIT Press, Cambridge, 1994)

    MATH  Google Scholar 

  32. B. Peng, L. Zhang, D. Zhang, A survey of graph theoretical approaches to image segmentation. Pattern Recognit. 46, 1020–1038 (2013)

    Article  Google Scholar 

  33. R.C. Prim, Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)

    Article  Google Scholar 

  34. J.B.T.M. Roerdink, A. Meijster, The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inform. 41(1–2), 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  35. G. Scutari, S. Barbarossa, P. Palomar, Potential games: a framework for vector power control problems with coupled constraints, in IEEE International conference of Acoustics, Speech and Signal Processing, Vol. 4 (2006), pp. 241–244

    Google Scholar 

  36. M. Sezgin, B. Sankur, Survey over image thresholding techniques and quantitative performance. J. Electron. Imaging 13(1), 146–165 (2004)

    Article  Google Scholar 

  37. A. Shahid, S. Aslam, H. Soek Kim, K.G. Lee, Distributed joint source and power allocation in self-organized femtocell networks: a potential game approach. J. Netw. Comput. Appl. 46, 280–292 (2014)

    Article  Google Scholar 

  38. D. Shen, G. Chen, Y. Zheng, E. Blasch, K. Pham, Game theoretic approach to similarity based image segmentation. Signal Data Process. Small Targets 8137, 1–12 (2011)

    Google Scholar 

  39. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. PAMI 22(8), 888–905 (2000)

    Article  Google Scholar 

  40. A. K. Sinop, L. Grady, A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm, in Proceedings of IEEE International Conference on Computer Vision (ICCV), Rio de Janiero, 14–21 October 2007, pp. 18

    Google Scholar 

  41. L. Vincent, P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  42. M. Voorneveld, Best response potential games. Econ. Lett. 66(3), 289–295 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Nakib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Kouzana, A., Nakib, A., Dogaz, N. (2017). Microscopic Image Segmentation Based on Based Branch and Bound and Game Theory. In: Nakib, A., Talbi, EG. (eds) Metaheuristics for Medicine and Biology. Studies in Computational Intelligence, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54428-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54428-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54426-6

  • Online ISBN: 978-3-662-54428-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics