Skip to main content

MEMS/NEMS Devices and Applications

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Microelectromechanical systems (MEMS) have played key roles in many important areas, for example, transportation, communication, automated manufacturing, environmental monitoring, healthcare, defense systems, and a wide range of consumer products. MEMS are inherently small, thus offering attractive characteristics such as reduced size, weight, and power dissipation and improved speed and precision compared to their macroscopic counterparts. Integrated circuits (GlossaryTerm

IC

) fabrication technology has been the primary enabling technology for MEMS besides a few special etching, bonding and assembly techniques. Microfabrication provides a powerful tool for batch processing and miniaturizing electromechanical devices and systems to a dimensional scale that is not accessible by conventional machining techniques. As IC fabrication technology continues to scale toward deep submicrometer and nanometer feature sizes, a variety of nanoelectromechanical systems (NEMS) have been rapidly emerging. Nanoscale mechanical devices and systems integrated with nanoelectronics will open a vast number of new exploratory research areas in science and engineering. NEMS will most likely serve as an enabling technology, merging engineering with the fundamental physics, quantum science, and life sciences in ways that are not currently feasible with microscale tools and technologies.

MEMS has been applied to a wide range of fields. Hundreds of microdevices have been developed for specific applications. It is thus difficult to provide an overview covering every aspect of the topic. In this chapter, key aspects of MEMS technology and applications are illustrated by selecting a few demonstrative device examples, such as pressure sensors, inertial sensors, optical and wireless communication devices. Microstructure examples with dimensions on the order of submicrometer are presented with fabrication technologies for emerging NEMS applications.

Although MEMS has experienced significant growth over the past decade, many challenges still remain. In broad terms, these challenges can be grouped into three general categories: (1) fabrication challenges; (2) packaging challenges; and (3) application challenges. Challenges in these areas will, in large measure, determine the commercial success of a particular MEMS device in both technical and economic terms. This chapter presents a brief discussion of some of these challenges as well as possible approaches to addressing them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Mehregany, S.F. Bart, L.S. Tavrow, J.H. Lang, S.D. Senturia: Principles in design and microfabrication of variable-capacitance side-drive motors, J. Vac. Sci. Tech. A 8, 3614–3624 (1990)

    Article  Google Scholar 

  2. Y.-C. Tai, R.S. Muller: IC-processed electrostatic synchronous micromotors, Sens. Actuators 20, 49–55 (1989)

    Article  Google Scholar 

  3. J.J. Sniegowski, S.L. Miller, G.F. LaVigne, M.S. Roders, P.J. McWhorter: Monolithic geared-mechanisms driven by a polysilicon surface-micromachined on-chip electrostatic microengine. In: IEEE Solid-State Sens. Actuators Workshop (1996) pp. 178–182

    Google Scholar 

  4. G.T.A. Kovacs: Micromachined Transducer Sourcebook (McGraw-Hill, Boston 1998)

    Google Scholar 

  5. S.D. Senturia: Microsystem Design (Kluwer Academic Publishers, New York 2001)

    Google Scholar 

  6. J.E. Gragg, W.E. McCulley, W.B. Newton, C.E. Derrington: Compensation and calibration of a monolithic four terminal silicon pressure transducer. In: IEEE Solid-State Sens. Actuators Workshop (1984) pp. 21–27

    Google Scholar 

  7. Y. Wang, M. Esashi: A novel electrostatic servo capacitive vacuum sensor. In: IEEE Int. Conf. Solid-State Sens. Actuators (1997) pp. 1457–1460

    Google Scholar 

  8. W.H. Ko, Q. Wang: Touch mode capacitive pressure sensors, Sens. Actuators 75, 242–251 (1999)

    Article  Google Scholar 

  9. H. Kapels, T. Scheiter, C. Hierold, R. Aigner, J. Binder: Cavity pressure determination and leakage testing for sealed surface micromachined membranes: a novel on-wafer test method. In: Proc. 11th Annu. Int. Workshop Micro Electro Mech. Syst. (MEMS98), January 25–29, Heidelberg (1998) pp. 550–555 doi:10.1109/MEMSYS.1998.659817

    Chapter  Google Scholar 

  10. J.M. Bustillo, R.T. Howe, R.S. Muller: Surface micromachining for microelectromechanical systems, Proc. IEEE 86(8), 1552–1574 (1998)

    Article  Google Scholar 

  11. J.H. Smith, S. Montague, J.J. Sniegowski, P.J. McWhorter: Embedded micromechanical devices for the monolithic integration of MEMS with CMOS, IEEE Int. Electron Dev. Meet. (1993) doi:10.2172/114489

  12. T.A. Core, W.K. Tsang, S.J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol. 36(10), 39–47 (1993)

    Google Scholar 

  13. H. Kapels, R. Aigner, C. Kolle: Monolithic surface-micromachined sensor system for high pressure applications. In: Transducers ’01 Eurosensors XV, ed. by E. Obermeier (Springer, Berlin, Heidelberg 2001) pp. 56–59

    Chapter  Google Scholar 

  14. C. Lu, M. Lemkin, B.E. Boser: A monolithic surface micromachined accelerometer with digital output, IEEE J. Solid-State Circuits 30(12), 160–161 (1995)

    Article  Google Scholar 

  15. N. Yazdi, K. Najafi: An all-silicon single-wafer fabrication technology for precision microaccelerometers. In: IEEE Int. Conf. Solid-State Sens. Actuators (1997) pp. 1181–1184

    Google Scholar 

  16. M. Lemkin, M.A. Ortiz, N. Wongkomet, B.E. Boser, J.H. Smith: A 3-axis surface micromachined σδ accelerometer. In: IEEE Int. Solid-State Circuits Conf., 1997. Dig. Tech. Pap. 43rd ISSCC (1997) pp. 202–203

    Chapter  Google Scholar 

  17. T.B. Gabrielson: Mechanical-thermal noise in micromachined acoustic and vibration sensors, IEEE Trans. Electron Devices 40(5), 903–909 (1993)

    Article  Google Scholar 

  18. W.A. Clark, R.T. Howe: Surface micromachined z-axis vibratory rate gyroscope. In: IEEE Solid-State Sens. Actuators Workshop (1996) pp. 283–287

    Google Scholar 

  19. T. Juneau, A.P. Pisano: Micromachined dual input axis angular rate sensor. In: Solid-State Sens. Actuators Workshop (IEEE, Cleveland Heights 1996) pp. 299–302

    Google Scholar 

  20. R.S. Muller, K.Y. Lau: Surface-micromachined microoptical elements and systems, Proc. IEEE 86(8), 1705–1720 (1998)

    Article  Google Scholar 

  21. L.J. Hornbeck: Current status of the digital micromirror device (DMD) for projection television applications. In: IEEE Int. Electron Devices Meet (1993) pp. 381–384

    Chapter  Google Scholar 

  22. P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86(8), 1687–1704 (1998)

    Article  Google Scholar 

  23. M.J. Daneman, N.C. Tien, O. Solgaard, K.Y. Lau, R.S. Muller: Linear vibromotor-actuated micromachined microreflector for integrated optical systems. In: IEEE Solid-State Sens. Actuators Workshop (1996) pp. 109–112

    Google Scholar 

  24. M.S. Cohen, M.F. Cina, E. Bassous, M.M. Opyrsko, J.L. Speidell, F.J. Canora, M.J. DeFranza: Packaging of high density fiber/laser modules using passive alignment techniques, IEEE Trans. Comp. Hybrids Manuf. Technol. 15, 944–954 (1992)

    Article  Google Scholar 

  25. M.J. Wale, C. Edge: Self-aligned flip-chip assembly of photonic devices with electrical and optical connections, IEEE Trans. Comp. Hybrids Manuf. Technol 13, 780–786 (1990)

    Article  Google Scholar 

  26. K.S.J. Pister, M.W. Judy, S.R. Burgett, R.S. Fearing: Microfabricated hinges, Sens. Actuators (A) 33(3), 249–256 (1992)

    Article  Google Scholar 

  27. O. Solgaard, M. Daneman, N.C. Tien, A. Friedberger, R.S. Muller, K.Y. Lau: Optoelectronic packaging using silicon surface-micromachined alignment mirrors, IEEE Photon. Technol. Lett. 7(1), 41–43 (1995)

    Article  Google Scholar 

  28. S.S. Lee, L.S. Huang, C.J. Kim, M.C. Wu: 2x2 MEMS fiber optic switches with silicon sub-mount for low-cost packaging. In: IEEE Solid-State Sens. Actuators Workshop (1998) pp. 281–284

    Google Scholar 

  29. T. Akiyama, H. Fujita: A quantitative analysis of scratch drive actuator using buckling motion. In: Proc. Micro Electro Mech. Syst., MEMS (1995) pp. 310–315

    Google Scholar 

  30. V.A. Aksyuk, F. Pardo, D.J. Bishop: Stress-induced curvature engineering in surface-micromachined devices, Proc. SPIE 3680, 984 (1999)

    Article  Google Scholar 

  31. D.J. Young, B.E. Boser: A micromachined variable capacitor for monolithic low-noise VCOs. In: IEEE Solid-State Sens. Actuator Workshop (1996) pp. 86–89

    Google Scholar 

  32. A. Dec, K. Suyama: Micromachined electro-mechanically tunable capacitors and their applications to RF IC’s, IEEE Trans. Microw. Theory Tech. 46, 2587–2596 (1998)

    Article  Google Scholar 

  33. Z. Li, N.C. Tien: A high tuning-ratio silicon-micromachined variable capacitor with low driving voltage. In: IEEE Solid-State Sens. Actuator Microsyst. Workshop (2002) pp. 239–242

    Google Scholar 

  34. Z. Xiao, W. Peng, R.F. Wolffenbuttel, K.R. Farmer: Micromachined variable capacitor with wide tuning range. In: IEEE Solid-State Sens. Actuator Workshop (2002) pp. 346–349

    Google Scholar 

  35. J.J. Yao, S.T. Park, J. DeNatale: High tuning-ratio MEMS-based tunable capacitors for RF communications applications. In: IEEE Solid-State Sens. Actuator Workshop (1998) pp. 124–127

    Google Scholar 

  36. J.B. Yoon, C.T.-C. Nguyen: A high-Q tunable micromechanical capacitor with movable dielectric for RF applications. In: IEEE Int. Electron Devices Meet (2000) pp. 489–492

    Google Scholar 

  37. D.J. Young, V. Malba, J.J. Ou, A.F. Bernhardt, B.E. Boser: Monolithic high-performance three-dimensional coil inductors for wireless communication applications. In: IEEE Int. Electron Devices Meet (1997) pp. 67–70

    Google Scholar 

  38. D.J. Young, B.E. Boser, V. Malba, A.F. Bernhardt: A micromachined RF low phase noise voltage-controlled oscillator for wireless communication, Int. J. RF Microw. Comput.-Aided Eng. 11(5), 285–300 (2001)

    Article  Google Scholar 

  39. J.B. Yoon, C.H. Han, E. Yoon, K. Lee, C.K. Kim: Monolithic high-Q overhang inductors fabricated on silicon and glass substrates. In: IEEE Int. Electron Devices Meet (1999) pp. 753–756

    Google Scholar 

  40. C.L. Chua, D.K. Fork, K.V. Schuylenbergh, J.P. Lu: Self-assembled out-of-plane high Q inductors. In: IEEE Solid-State Sens. Actuator Microsyst. Workshop (2002) pp. 372–373

    Google Scholar 

  41. C.L. Goldsmith, Z. Yao, S. Eshelman, D. Denniston: Performance of low-loss RF MEMS capacitive switches, IEEE Microw. Guided Wave Lett. 8(8), 269–271 (1998)

    Article  Google Scholar 

  42. J.J. Yao, M.F. Chang: A surface micromachined miniature switch for telecommunication applications with signal frequencies from DC up to 40 GHz. In: 8th Int. Conf. Solid-State Sens. Actuators (1995) pp. 384–387

    Google Scholar 

  43. P.M. Zavracky, N.E. McGruer, R.H. Morriosn, D. Potter: Microswitches and microrelays with a view toward microwave applications, Int. J. RF Microw. Comput.-Aided Eng. 9(4), 338–347 (1999)

    Article  Google Scholar 

  44. D. Hyman, J. Lam, B. Warneke, A. Schmitz, T.Y. Hsu, J. Brown, J. Schaffner, A. Walston, R.Y. Loo, M. Mehregany, J. Lee: Surface-micromachined RF MEMs switches on GaAs substrates, Int. J. RF Microw. Comput.-Aided Eng. 9(4), 348–361 (1999)

    Article  Google Scholar 

  45. C.T.C. Nguyen, R.T. Howe: CMOS microelectromechanical resonator oscillator. In: IEEE Int. Electron Devices Meet (1993) pp. 199–202

    Chapter  Google Scholar 

  46. L. Lin, R.T. Howe, A.P. Pisano: Microelectromechanical filters for signal processing, IEEE J. Microelectromech. Syst. 7(3), 286–294 (1998)

    Article  Google Scholar 

  47. F.D. Bannon III, J.R. Clark, C.T.C. Nguyen: High frequency micromechanical filter, IEEE J. Solid-State Circuits 35(4), 512–526 (2000)

    Article  Google Scholar 

  48. K. Wang, Y. Yu, A.C. Wong, C.T.C. Nguyen: VHF free-free beam high-Q micromechanical resonators. In: 12th IEEE Int. Conf. Micro Electro Mech. Syst. (1999) pp. 453–458

    Google Scholar 

  49. J.R. Clark, W.T. Hsu, C.T.C. Nguyen: High-Q VHF micromechanical contour-mode disk resonators. In: IEEE Int. Electron Devices Meet (2000) pp. 493–496

    Google Scholar 

  50. C.T.C. Nguyen, R.T. Howe: Quality factor control for micromechanical resonator. In: IEEE Int. Electron Devices Meet (1992) pp. 505–508

    Google Scholar 

  51. M.L. Roukes: Nanoelectromechanical systems face the future, Phys. World 14, 25–31 (2001)

    Article  Google Scholar 

  52. M.L. Roukes, A. Scherer, S.J. Allen Jr., H.G. Craighead, R.M. Ruthen, E.D. Beebe, J.P. Harbison: Quenching of the Hall effect in a onedimensional wire, Phys. Rev. Lett. (1987) doi:10.1103/PhysRevLett.59.3011

  53. B.P. Van der Gaag, A. Scherer: Microfabrication below 10nm, Appl. Phys. Lett. (1990) doi:10.1063/1.102772

  54. M.L. Roukes: Nanoelectromechanical systems. In: Tech. Dig. 2000 Solid-State Sens. Actuator Workshop (Transducers Research Foundation, Cleveland 2000) pp. 367–376

    Google Scholar 

  55. M.L. Roukes: Plenty of room, indeed, Sci, Am, Vol. 285, 2001) pp. 48–57

    Google Scholar 

  56. K.L. Ekinci, Y.T. Yang, M.L. Roukes: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems, J. of Appl. Phys. 95(5), 2682–2689 (2004)

    Article  Google Scholar 

  57. K.L. Ekinci, M.L. Roukes: Nanoelectromechanical systems, Rev. of Sci. Instrum. (2005) doi:10.1063/1.1927327

  58. H.G. Craighead: Nanoelectromechanical systems, Science 290, 1532–1535 (2000)

    Article  Google Scholar 

  59. A.N. Cleland, M.L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996)

    Article  Google Scholar 

  60. D.W. Carr, H.G. Craighead: Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vac. Sci. Technol. B 15, 2760–2763 (1997)

    Article  Google Scholar 

  61. T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70, 2687–2689 (1997)

    Article  Google Scholar 

  62. S.C. Masmanidis, R.B. Karabalin, I.D. Vlaminck, G. Borghs, M.R. Freeman, M.L. Roukes: Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation, Science (2007) doi:10.1126/science.1144793

  63. H.X. Tang, X.M.H. Huang, M.L. Roukes, M. Bichler, W. Wegsheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002)

    Article  Google Scholar 

  64. R. Ruby, P. Bradley, J.D. Larson, Y. Oshmyansky: PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs), Electron. Lett. (1999) doi:10.1049/el:19990559

  65. G. Piazza, P.J. Stephanou, A.P. Pisano: Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators, J. of Microelectromechanical Syst. (2006) doi:10.1109/JMEMS.2006.886012

  66. R.B. Karabalin, M.H. Matheny, X.L. Feng, E. Defaÿ, G. Le Rhun, C. Marcoux, S. Hentz, P. Andreucci, M.L. Roukes: Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films, Appl. Phys. Lett. (2009) doi:10.1063/1.3216586

  67. N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza: Piezoelectric aluminum nitride nanoelectromechanical actuators, Appl. Phys. Lett. (2009) doi:10.1063/1.3194148

  68. X.L. Feng, R.R. He, P.D. Yang, M.L. Roukes: Very high frequency silicon nanowire electromechanical resonators, Nano Lett. (2007) doi:10.1021/nl0706695

  69. P.X.-L. Feng: Nanoscale electromechanical devices enabled by nanowire structures. In: Microelectronics to Nanoelectronics: Materials, Devices & Manufacturability, ed. by A.B. Kaul (CRC, Boca Raton 2012) pp. 109–128

    Chapter  Google Scholar 

  70. D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia: Measurement of mechanical resonance and losses in nanometer scale silicon wires, Appl. Phys. Lett. 75, 920–922 (1999)

    Article  Google Scholar 

  71. D.W. Carr, L. Sekaric, H.G. Craighead: Measurement of nanomechanical resonant structures in single-crystal silicon, J. Vac. Sci. Technol. B 16, 3821–3824 (1998)

    Article  Google Scholar 

  72. S. Evoy, D.W. Carr, L. Sekaric, A. Olkhovets, J.M. Parpia, H.G. Craighead: Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators, J. Appl. Phys. 86, 6072–6077 (1999)

    Article  Google Scholar 

  73. L. Sekaric, M. Zalalutdinov, S.W. Turner, A.T. Zehnder, J.M. Parpia, H.G. Craighead: Nanomechancial resonant structures as tunable passive modulators, Appl. Phys. Lett. 80, 3617–3619 (2002)

    Article  Google Scholar 

  74. A.N. Cleland, M.L. Roukes: A nanometre-scale mechanical electrometer, Nature 392, 160–162 (1998)

    Article  Google Scholar 

  75. K.C. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes: Measurement of the quantum of thermal conductance, Nature 404, 974–977 (2000)

    Article  Google Scholar 

  76. S. Evoy, A. Olkhovets, L. Sekaric, J.M. Parpia, H.G. Craighead, D.W. Carr: Temperature-dependent internal friction in silicon nanoelectromechanical systems, Appl. Phys. Lett. 77, 2397–2399 (2000)

    Article  Google Scholar 

  77. X.M.H. Huang, X.L. Feng, C.A. Zorman, M. Mehregany, M.L. Roukes: VHF, UHF and microwave frequency nanomechanical resonators, New J. of Phys. (2005) doi:10.1088/1367-2630/7/1/247

  78. X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes: Nanoelectromechanical systems: Nanodevice motion at microwave frequencies, Nature 421, 496 (2003)

    Article  Google Scholar 

  79. X.L. Feng, C.J. White, A. Hajimiri, M.L. Roukes: A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator, Nat. Nanotechnol. 3, 342–346 (2008)

    Article  Google Scholar 

  80. R.G. Knobel, A.N. Cleland: Nanometre-scale displacement sensing using a single electron transistor, Nature 424, 291–293 (2003)

    Article  Google Scholar 

  81. M.D. LaHaye: The Radio-Frequency Single-Electron Transistor Displacement Detector, Ph.D. Thesis (Department of Physics, University of Maryland, College Park 2005)

    Google Scholar 

  82. M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab: Approaching the quantum limit of a nanomechanical resonator, Science 304, 74–77 (2004)

    Article  Google Scholar 

  83. M.D. LaHaye, J. Suh, P.M. Echternach, K.C. Schwab, M.L. Roukes: Nanomechanical measurements of a superconducting qubit, Nature 459, 960–964 (2009)

    Article  Google Scholar 

  84. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland: Quantum ground state and single-phonon control of a mechanical resonator, Nature 464, 697–703 (2010)

    Article  Google Scholar 

  85. A. Cho: Researchers race to put the quantum into mechanics, Science (2003) doi:10.1126/science.299.5603.36

  86. K.C. Schwab, M.L. Roukes: Putting mechanics into quantum mechanics, Phys. Today 58, 36–42 (2005)

    Article  Google Scholar 

  87. C.A. Regal, J.D. Teufel, K.W. Lehnert: Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys. 4, 555–560 (2008)

    Article  Google Scholar 

  88. J.D. Teufel, T. Donner, D. Li, J.W. Harlow, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds: Sideband cooling of micromechanical motion to the quantum ground state, Nature 475, 359–363 (2011)

    Article  Google Scholar 

  89. T.J. Kippenberg, K.J. Vahala: Cavity optomechanics, Opt. Express 15, 17172–17205 (2007)

    Article  Google Scholar 

  90. T.J. Kippenberg, K.J. Vahala: Cavity optomechanics: Back-action at the mesoscale, Science 321, 1172–1176 (2008)

    Article  Google Scholar 

  91. T.D. Stowe, K. Yasumura, T.W. Kenny, D. Botkin, K. Wago, D. Rugar: Attonewton force detection using ultrathin silicon cantilevers, Appl. Phys. Lett. 71, 288–290 (1997)

    Article  Google Scholar 

  92. D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui: Single spin detection by magnetic resonance force microscopy, Nature 430, 329–332 (2004)

    Article  Google Scholar 

  93. Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, M.L. Roukes: Zeptogram-scale nanomechanical mass sensing, Nano Lett. 6, 583–586 (2006)

    Article  Google Scholar 

  94. A.K. Naik, M.S. Hanay, W.K. Hiebert, X.L. Feng, M.L. Roukes: Toward single-molecule nanomechanical mass spectrometry, Nat. Nanotechnol. 4, 445–450 (2009)

    Article  Google Scholar 

  95. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold: Ultrasensitive mass sensing with a nanotube electromechanical resonator, Nano Lett. 8, 3735–3738 (2008)

    Article  Google Scholar 

  96. H.Y. Chiu, P. Hung, H.W. Ch Postma, M. Bockrath: Atomic-scale mass sensing using carbon nanotube resonators, Nano Lett. 8, 4342–4346 (2008)

    Article  Google Scholar 

  97. K. Jensen, K. Kim, A. Zettl: An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol. 3, 533–537 (2008)

    Article  Google Scholar 

  98. T.P. Burg, M. Godin, S.M. Knudsen, W.J. Shen, G. Carlson, J.S. Foster, K. Babcock, S.R. Manalis: Weighing of biomolecules, single cells and single nanoparticles in fluid, Nature 446, 1066–1069 (2007)

    Article  Google Scholar 

  99. J.L. Arlett, E.B. Myers, M.L. Roukes: Comparative advantages of mechanical biosensors, Nat. Nanotechnol. 6, 203–215 (2011)

    Article  Google Scholar 

  100. Y.T. Yang, C. Callegari, X.L. Feng, M.L. Roukes: Surface adsorbate fluctuations and noise in nanoelectromechanical systems, Nano Lett 11, 1753–1759 (2011)

    Article  Google Scholar 

  101. R.R. He, X.L. Feng, M.L. Roukes, P.D. Yang: Self-transducing silicon nanowire electromechanical systems at room temperature, Nano Lett. 8, 1756–1761 (2008)

    Article  Google Scholar 

  102. Z. Wang, J. Lee, P.X.-L. Feng: Spatial mapping of multimode Brownian motions in high frequency silicon carbide microdisk resonators, Nat. Commun. (2014) doi:10.1038/ncomms6158

  103. T. He, R. Yang, S. Rajgopa, M. Tupta, S. Bhunia, M. Mehregany, P.X.-L. Feng: Robust silicon carbide (SiC) nanoelectromechanical switches with long cycles in ambient and high temperature conditions. In: Proc. 26th IEEE Int. Conf. Micro Electro Mech. Syst., Taipei (2013) pp. 516–519

    Google Scholar 

  104. T. He, R. Yang, V. Ranganathan, S. Rajgopal, M.A. Tupta, S. Bhunia, M. Mehregany, P.X.-L. Feng: Silicon carbide (SiC) nanoelectromechanical switches and logic gates with long cycles and robust performance in ambient air and at high temperature, Electron Devices Meet. (2013) doi:10.1109/IEDM.2013.6724562

  105. T. Lee, S. Bhunia, M. Mehregany: Electromechanical computing at 500C with SiC, Science 329, 1316–1318 (2010)

    Article  Google Scholar 

  106. X.L. Feng, M.H. Matheny, C.A. Zorman, M. Mehregany, M.L. Roukes: Low voltage nanoelectromechanical switches based on silicon carbide nanowires, Nano Lett 10, 2891–2896 (2010)

    Article  Google Scholar 

  107. T. He, R. Yang, S. Rajgopal, S. Bhunia, M. Mehregany, P.X.-L. Feng: Dual-gate silicon carbide (SiC) lateral nanoelectromechanical switches. In: Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference (IEEE, Suzhou 2013) doi:10.1109/NEMS.2013.6559791

    Chapter  Google Scholar 

  108. T. He, V. Ranganathan, R. Yang, S. Rajgopal, S. Bhunia, M. Mehregany, P.X.-L. Feng: Time-domain AC characterization of silicon carbide (SiC) nanoelectromechanical switches toward high-speed operations. In: Tech. Digest, 17th Int. Conf. on Solid-State Sensors, Actuators & Microsystems (Transducers 13) (IEEE, Barcelona 2013) doi:10.1109/Transducers.2013.6626855

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Feng, P.XL., Young, D.J., Zorman, C.A. (2017). MEMS/NEMS Devices and Applications. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics