Skip to main content

Universal Models for the Positive Fragment of Intuitionistic Logic

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10148))

Abstract

We describe the n-universal model \(\mathcal {U}^\star (n)\) of the positive fragment of the intuitionistic propositional calculus \(\mathsf {IPC}\). We show that \(\mathcal {U}^\star (n)\) is isomorphic to a generated submodel of \(\mathcal {U}(n)\) – the n-universal model of \(\mathsf {IPC}\). Using \(\mathcal {U}^\star (n)\), we give an alternative proof of Jankov’s theorem stating that the intermediate logic \(\mathsf {KC}\), the logic of the weak law of excluded middle, is the greatest intermediate logic extending \(\mathsf {IPC}\) that proves exactly the same positive formulas as \(\mathsf {IPC}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We note that [10, 17] do not discuss universal (exact in their terminology) models of non-locally finite fragments of \(\mathsf {IPC}\).

  2. 2.

    In fact, \(\Rightarrow \) is just the Heyting implication of the Heyting algebra of all upsets of W.

  3. 3.

    Descriptive general frames are essentially the same as Esakia spaces (see e.g., [4, Sect. 2.3]). This topological perspective explains why compact general frames are called “compact” (the corresponding topology is compact). This also explains why \(\mathcal {Q}\) in Definition 3(3) is defined this way.

  4. 4.

    Notice that some authors, e.g., [6] call such formulas negation-free.

References

  1. Bellissima, F.: Finitely generated free Heyting algebras. J. Symbolic Logic 51, 152–165 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezhanishvili, G., Bezhanishvili, N.: An algebraic approach to canonical formulas: intuitionistic case. Rev. Symbolic Logic 2(3), 517–549 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bezhanishvili, G., Moraschini, T., Raftery, J.: Epimorphisms in varieties of residuated structures (2016, submitted)

    Google Scholar 

  4. Bezhanishvili, N.: Lattices of intermediate and cylindric modal logics. Ph.D. thesis, University of Amsterdam (2006)

    Google Scholar 

  5. Bezhanishvili, N., Coumans, D., Gool, S.J., de Jongh, D.: Duality and universal models for the meet-implication fragment of IPC. In: Aher, M., Hole, D., Jeřábek, E., Kupke, C. (eds.) TbiLLC 2013. LNCS, vol. 8984, pp. 97–116. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46906-4_7

    Google Scholar 

  6. Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford Logic Guides (1997)

    MATH  Google Scholar 

  7. Colacito, A.: Minimal and subminimal logic of negation. Master’s Thesis, University of Amsterdam (2016)

    Google Scholar 

  8. Colacito, A., de Jongh, D., Vargas Sandoval, A.L.: Subminimal negation. In Proceedings of Coherence and Truth, Conference in Memoriam Franco Montagna (2015). To be published in Soft Computing

    Google Scholar 

  9. de Jongh, D.: Investigations on the intuitionistic propositional calculus. Ph.D. thesis, University of Wisconsin (1968)

    Google Scholar 

  10. de Jongh, D., Hendriks, L., de Lavalette, G.R.: Computations in fragments of intuitionistic propositional logic. J. Autom. Reasoning 7(4), 537–561 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Jongh, D., Yang, F.: Jankov’s theorems for intermediate logics in the setting of universal models. In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds.) TbiLLC 2009. LNCS (LNAI), vol. 6618, pp. 53–76. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22303-7_5

    Chapter  Google Scholar 

  12. de Jongh, D., Zhao, Z.: Positive formulas in intuitionistic and minimal logic. In: Aher, M., Hole, D., Jeřábek, E., Kupke, C. (eds.) TbiLLC 2013. LNCS, vol. 8984, pp. 175–189. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46906-4_11

    Google Scholar 

  13. Diego, A.: Sur les Algèbres de Hilbert, vol. 21. E. Nauwelaert, Gauthier-Villars, Louvain (1966)

    MATH  Google Scholar 

  14. Ghilardi, S.: Irreducible models and definable embeddings. In: Gabbay, D., Csirmaz, L., de Rijke, M. (eds.) Logic Colloquium 92 (Proceedings), Studies in Logic, Language and Information, pp. 95–213. CSLI Publications (1995)

    Google Scholar 

  15. Goudsmit, J.: Intuitionistic rules: admissible rules of intermediate logics. Ph.D. thesis, Utrecht University (2015)

    Google Scholar 

  16. Grigolia, R.: Free Algebras of Non-Classical Logics. Metsniereba, Tbilisi (1987). (Russian)

    Google Scholar 

  17. Hendriks, L.: Computations in propositional logic. Ph.D. thesis, University of Amsterdam (1996)

    Google Scholar 

  18. Jankov, V.A.: Calculus of the weak law of the excluded middle (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 32(5), 1044–1051 (1968)

    MathSciNet  Google Scholar 

  19. Johansson, I.: Der Minimalkalkül, Ein Reduzierter Intuitionistischer Formalismus. Compositio Mathematica 4, 119–136 (1937)

    MathSciNet  MATH  Google Scholar 

  20. Renardel de Lavalette, G., Hendriks, A., de Jongh, D.: Intuitionistic implication without disjunction. J. Logic Comput. 22(3), 375–404 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rybakov, V.: Rules of inference with parameters for intuitionistic logic. J. Symbolic Logic 57, 33–52 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shehtman, V.: Rieger-Nishimura lattices. Sov. Math. Dokl. 19, 1014–1018 (1978)

    MATH  Google Scholar 

  23. Yang, F.: Intuitionistic subframe formulas, NNIL-formulas and n-universal models. Master’s Thesis, University of Amsterdam (2008)

    Google Scholar 

Download references

Acknowledgement

We would like to thank the referees of this paper for careful reading and many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Bezhanishvili, N., de Jongh, D., Tzimoulis, A., Zhao, Z. (2017). Universal Models for the Positive Fragment of Intuitionistic Logic. In: Hansen, H., Murray, S., Sadrzadeh, M., Zeevat, H. (eds) Logic, Language, and Computation. TbiLLC 2015. Lecture Notes in Computer Science(), vol 10148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54332-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54332-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54331-3

  • Online ISBN: 978-3-662-54332-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics