Skip to main content

The Topology of Full and Weak Belief

  • Conference paper
  • First Online:
Logic, Language, and Computation (TbiLLC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10148))

Included in the following conference series:

Abstract

We introduce a new topological semantics for belief logics in which the belief modality is interpreted as the interior of the closure of the interior operator. We show that the system wKD45, a weakened version of KD45, is sound and complete with respect to the class of all topological spaces. While generalizing the topological belief semantics proposed in [1, 2] to all spaces, we model conditional beliefs and updates and give complete axiomatizations of the corresponding logics with respect to the class of all topological spaces.

A. Özgün—Acknowledges support from European Research Council grant EPS 313360.

S. Smets—Contribution to this paper has received funding from the European Research Council under the European Community’s 7th Framework Programme/ERC Grant agreement no. 283963.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an overview of responses to the Gettier challenge and a detailed discussion, we refer the reader to [18, 27].

  2. 2.

    For a more detailed discussion on Stalnaker’s approach, we refer the reader to [2].

  3. 3.

    \(\langle K\rangle \) denotes the dual of K, i.e., \(\lnot K\lnot \varphi :=\langle K\rangle \varphi \).

  4. 4.

    Originally, McKinsey and Tarski [23] introduce the interior semantics for the basic modal language. Since we talk about this semantics in the context of knowledge, we use the basic epistemic language.

  5. 5.

    The reader who is not familiar with the standard Kripke semantics is referred to [8, 11] for an extensive introduction to the topic.

  6. 6.

    A set \(A\subseteq X\) is called an upset of (XR) if for each \(x, y\in X\), xRy and \(x\in A\) imply \(y\in A\).

  7. 7.

    A topological property is said to be hereditary if for any topological space \((X, \tau )\) that has the property, every subspace of \((X, \tau )\) also has it [14, p. 68].

  8. 8.

    A subset \(A\subseteq X\) is called nowhere dense in \((X, \tau )\) if \(\mathrm {Int}(\mathrm {Cl}(A))=\emptyset \).

  9. 9.

    A subset \(A\subseteq X\) of a topological space \((X, \tau )\) satisfying the condition \(A=\mathrm {Int}(\mathrm {Cl}(A)\) is called regular open [14].

  10. 10.

    In fact, for any \(A\subseteq X\), the set \(\mathrm {Int}(\mathrm {Cl}(A))\) is regular open, however, it is not always the case that \(A\subseteq \mathrm {Int}(\mathrm {Cl}(A))\).

  11. 11.

    Brushes and pins are introduced in [25] and a similar terminology is used in this paper.

  12. 12.

    In [2], we propose topological semantics for conditional beliefs based on hereditarily extremally disconnected spaces.

References

  1. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: The topology of belief, belief revision and defeasible knowledge. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196, pp. 27–40. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40948-6_3

    Chapter  Google Scholar 

  2. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: The topological theory of belief (2015). http://www.illc.uva.nl/Research/Publications/Reports/PP-2015-18.text.pdf

  3. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: Justified belief and the topology of evidence. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 83–103. Springer, Heidelberg (2016). doi:10.1007/978-3-662-52921-8_6

    Google Scholar 

  4. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. Texts Logic Games 3, 9–58 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Baskent, C.: Topics in Subset Space Logic. Master’s thesis, ILLC. University of Amsterdam, The Netherlands (2007)

    Google Scholar 

  6. Baskent, C.: Geometric public announcement logics. In: Murray, R.C., McCarthy, P.M. (eds.) Proceedings of the 24th Florida Artificial Intelligence Research Society Conference (FLAIRS-24), pp. 87–88 (2011)

    Google Scholar 

  7. Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J.: S4.3 and hereditarily extremally disconnected spaces. Georgian Mathemetical J. 22(3), 469–475 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  9. Boutilier, C.: Conditional logics of normality as modal systems. In: Shrobe, H.E., Dietterich, T.G., Swartout, W.R. (eds.) AAAI, pp. 594–599. AAAI Press/The MIT Press (1990)

    Google Scholar 

  10. Chagrov, A.V., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  11. Chellas, B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)

    Book  MATH  Google Scholar 

  12. DeRose, K.: The Case for Contextualism, 1st edn. Oxford University Press, New York (2009)

    Book  Google Scholar 

  13. Dugundji, J.: Topology. Allyn and Bacon Series in Advanced Mathematics. Prentice Hall, Saddle River (1965)

    MATH  Google Scholar 

  14. Engelking, R.: General Topology, vol. 6, 2nd edn. Heldermann Verlag, Berlin (1989)

    MATH  Google Scholar 

  15. Gettier, E.: Is justified true belief knowledge? Analysis 23, 121–123 (1963)

    Article  Google Scholar 

  16. Hendricks, V., Symons, J.: Epistemic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, fall 2015 edn. Metaphysics Research Lab Stanford University (2015)

    Google Scholar 

  17. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)

    Google Scholar 

  18. Ichikawa, J.J., Steup, M.: The analysis of knowledge. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, fall 2013 edn. Metaphysics Research Lab, Stanford University (2013)

    Google Scholar 

  19. Klein, D., Gratzl, N., Roy, O.: Introspection, normality and agglomeration. In: Hoek, W., Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 195–206. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48561-3_16

    Chapter  Google Scholar 

  20. Klein, P.: A proposed definition of propositional knowledge. J. Philos. 68, 471–482 (1971)

    Article  Google Scholar 

  21. Lehrer, K., Paxson, T.J.: Knowledge: undefeated justified true belief. J. Philos. 66, 225–237 (1969)

    Article  Google Scholar 

  22. Lenzen, W.: Recent Work in Epistemic Logic, vol. 30. Acta Philosophica Fennica, North Holland (1978)

    MATH  Google Scholar 

  23. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. of Math. 45(2), 141–191 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nozick, R.: Philosophical Explanations. Harvard University Press, Cambridge (1981)

    Google Scholar 

  25. Özgün, A.: Topological Models for Belief and Belief Revision. Master’s thesis, ILLC. University of Amsterdam, The Netherlands (2013)

    Google Scholar 

  26. Parikh, R., Moss, L.S., Steinsvold, C.: Topology and epistemic logic. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 299–341. Springer, Amsterdam (2007)

    Google Scholar 

  27. Rott, H.: Stability, strength and sensitivity: converting belief into knowledge. Erkenntnis 61, 469–493 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sikorski, R.: Boolean Algebras. Springer, Heidelberg (1964)

    MATH  Google Scholar 

  29. Sosa, E.: How to defeat opposition to moore. Nos 33, 141–153 (1999)

    Google Scholar 

  30. Stalnaker, R.: On logics of knowledge and belief. Phil. Stud. 128, 169–199 (2006)

    Article  MathSciNet  Google Scholar 

  31. Steinsvold, C.: Topological models of belief logics. Ph.D. thesis, New York, NY, USA (2007)

    Google Scholar 

  32. Steinsvold, C.: A grim semantics for logics of belief. J. Philos. Logic 37, 45–56 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., van Benthem, J., Pratt-Hartman, I. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Amsterdam (2007)

    Google Scholar 

  34. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Stud. Logica 99(1), 61–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Voorbraak, F. As Far as I Know. Ph.D. thesis, Utrecht University (1993)

    Google Scholar 

  36. Williamson, T.: Knowledge and its Limits. Oxford University Press, Oxford (2000)

    Google Scholar 

  37. Wolter, F. Lattices of Modal Logics. Ph.D. thesis. Free University, Berlin (1993)

    Google Scholar 

  38. Zvesper, J.: Playing with Information. Ph.D. thesis, ILLC. University of Amsterdam (2010)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their valuable comments that help us improve the presentation of the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aybüke Özgün .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S. (2017). The Topology of Full and Weak Belief. In: Hansen, H., Murray, S., Sadrzadeh, M., Zeevat, H. (eds) Logic, Language, and Computation. TbiLLC 2015. Lecture Notes in Computer Science(), vol 10148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54332-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54332-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54331-3

  • Online ISBN: 978-3-662-54332-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics