Advertisement

Quanten-Identität und Ununterscheidbarkeit

  • Holger Lyre
Chapter

Zusammenfassung

Kapitel 3 steht technisch und sachlich zwischen Kap. 1 und 6. In Kap. 1 wurde die 1-Teilchen-Quantenmechanik im Hilbertraum eingeführt, das vorliegende Kapitel behandelt n Teilchen im Vielteilchen-Hilbertraum und Kap. 6 variable Teilchenzahlen mit Aufsteige- und Absteigeoperatoren im Fockraum. Das Kapitel zerfällt in zwei Teile, wobei 3.1 physikalisch, 3.2 aber stärker philosophisch orientiert ist.

Literatur zu Kap. 3

  1. Adams, Robert M. (1979). Primitive thisness and primitive identity. Journal of Philosophy 76, 5–26.Google Scholar
  2. Black, Max (1952). The identity of indiscernibles. Mind 61, 153–64.Google Scholar
  3. Born, Max (1927). Quantenmechanik und Statistik. Naturwissenschaften 15, 238–242.Google Scholar
  4. Butterfield, Jeremy (1993). Interpretation and identity in quantum theory. Studies in History and Philosophy of Science 24, 443–476.Google Scholar
  5. Caulton, Adam und Jeremy Butterfield (2012). Symmetries and paraparticles as a motivation for structuralism. British Journal for the Philosophy of Science 63(2), 233–285.Google Scholar
  6. Brown, Harvey, Erik Sjöqvist und Guido Bacciagaluppi (1999). Remarks on identical particles in de Broglie-Bohm theory. Physics Letters A 251, 229–235.Google Scholar
  7. Cassirer, Ernst (1937). Determinismus und Indeterminismus in der modernen Physik: historische und systematische Studien zum Kausalproblem. Göteborg: Wettergren und Kerbers Förlag.Google Scholar
  8. Castellani, Elena, Hg. (1998). Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton: Princeton University Press.Google Scholar
  9. Castellani, Elena und Peter Mittelstaedt (2000). Leibniz’s principle, physics, and the language of physics. Foundations of Physics 30(10), 1587–1604.Google Scholar
  10. Cortes, Alberto (1976). Leibniz’s principle of the identity of indiscernibles: A false principle. Philosophy of Science 43(4), 491–505.Google Scholar
  11. Darrigol, Oliver (1991). Statistics and combinatorics in early quantum theory II: Early symptoms of indistinguishability and holism. Historical Studies in the Physical Sciences 21, 237–98.Google Scholar
  12. Della Rocca, Michael (2005). Two spheres, twenty spheres, and the identity of indiscernibles. Pacific Philosophical Quarterly 86, 480–492.Google Scholar
  13. Dieks, Dennis und Marijn A. M. Versteegh (2008). Identical quantum particles and weak discernibility. Foundations of Physics 38, 923–934.Google Scholar
  14. Dorato, Mauro und Matteo Morganti (2013). Grades of individuality. A pluralistic view of identity in quantum mechanics and in the sciences. Philosophical Studies 163(3), 591–610.Google Scholar
  15. Feynman, Richard P., Robert B. Leighton und Matthew Sands (1964). The Feynman Lectures on Physics, Vol. 3. Reading, MA: Addison-Wesley.Google Scholar
  16. French, Steven (1975). Hacking away at the identity of indiscernibles: Possible worlds and Einstein’s principle of equivalence. Journal of Philosophy 92(9), 455–466.Google Scholar
  17. French, Steven (1989). Identity and individuality in classical and quantum physics. Australasian Journal of Philosophy 67, 432–446.Google Scholar
  18. French, Steven (2011). Identity and individuality in quantum theory. The Stanford Encyclopedia of Philosophy (Summer 2011 Edition), http://plato.stanford.edu.
  19. French, Steven (2014). The Structure of the World. Oxford: Oxford University Press.Google Scholar
  20. French, Steven und James Ladyman (2003). Remodelling structural realism: Quantum physics and the metaphysics of structure. Synthese 136(1), 31–56.Google Scholar
  21. French, Steven und Michael Redhead (1988). Quantum physics and the identity of indiscernibles. British Journal for the Philosophy of Science 39, 233–246.Google Scholar
  22. French, Steven und Decio Krause, Hg. (2006). Identity and Individuality in Modern Physics. Oxford: Oxford University Press.Google Scholar
  23. French, Steven und James Ladyman (2011). In defence of ontic structural realism. In: P. Bokulich und A. Bokulich (Hg.), Scientific Structuralism. New York: Springer.Google Scholar
  24. Friebe, Cord (2014). Individuality, distinguishability, and (non-)entanglement: A defense of Leibniz’s principle. Studies in History and Philosophy of Modern Physics 48, 89–98.Google Scholar
  25. Ghirardi, GianCarlo, Luca Marinatto und Tullio Weber (2002). Entanglement and properties of composite quantum Systems: A conceptual and mathematical analysis. Journal of Statistical Physics 108, 49–122.Google Scholar
  26. Hacking, Ian (1975). The identity of indiscernibles. Journal of Philosophy 72(9), 249–256.Google Scholar
  27. Hawley, Katherine (2009). Identity and indiscernibility. Mind 118(1), 101–119.Google Scholar
  28. Hesse, Mary B. (1966). Models and Analogies in Science. Notre Dame, IN: University of Notre Dame Press.Google Scholar
  29. Huggett, Nick und Josh Norton (2014). Weak discernibility for quanta, the right way. British Journal for the Philosophy of Science 65(1), 39–58.Google Scholar
  30. Ladyman, James und Tomasz Bigaj (2010). The principle of the identity of indiscernibles and quantum mechanics. Philosophy of Science 77(1), 117–136.Google Scholar
  31. Landau, Lew und Jewgeni Lifschitz (1979). Lehrbuch der theoretischen Physik – Band III: Quantenmechanik. Berlin: Akademie-Verlag (russische Originalausgabe: Nauka, Moskau 1974).Google Scholar
  32. Leitgeb, Hannes und James Ladyman (2008). Criteria of identity and structuralist ontology. Philosophia Mathematica (III) 16, 388–396.Google Scholar
  33. Lewis, David K. (1986). On the Plurality of Worlds. Oxford: Blackwell.Google Scholar
  34. Loux, Michael J. (1998,32006). Metaphysics: A Contemporary Introduction. London: Routledge.Google Scholar
  35. Lyre, Holger (2007). Philosophische Probleme von Raumzeit-Theorien. In: A. Bartels und M. Stöckler (Hg.). Wissenschaftstheorie. Ein Studienbuch, 223–244. Paderborn: Mentis.Google Scholar
  36. Lyre, Holger (2012). Symmetrien, Strukturen, Realismus. In: M. Esfeld (Hg.), Philosophie der Physik, 368–389. Berlin: Suhrkamp.Google Scholar
  37. Margenau, Henry (1944). The exclusion principle and its philosophical importance. Philosophy of Science 11(4), 187–208.Google Scholar
  38. Messiah, Albert (1979). Quantenmechanik, Band 2. Berlin: W. de Gruyter (franz. Original: Mécanique quantique, Paris, 1959).Google Scholar
  39. Messiah, Albert und Oscar Greenberg (1964). Symmetrization postulate and its experimental foundation. Physical Review 136(1B), 248–267.Google Scholar
  40. Muller, Fred A. und Simon Saunders (2008). Discerning fermions. British Journal for the Philosophy of Science 59, 499–548.Google Scholar
  41. Muller, Fred A. und Michiel P. Seevinck (2009). Discerning elementary particles. Philosophy of Science 76, 179–200.Google Scholar
  42. Meyenn, Karl von (1987). Pauli’s belief in exact symmetries. In: M. Doncel (Hg.), Symmetries in Physics (1600-1980), 329–358. Barcelona: Universitat Autònoma de Barcelona.Google Scholar
  43. Post, Heinz (1963). Individuality and physics. The Listener 70, 534–537.Google Scholar
  44. Quine, Willard van Orman (1969). Ontological Relativity and Other Essays. New York: Columbia University Press.Google Scholar
  45. Quine, Willard van Orman (1976). Grades of discriminability. Journal of Philosophy 73(5), 113–116.Google Scholar
  46. Saunders, Simon (2003). Physics and Leibniz’s principles. In: K. Brading und E. Castellani (Hg.), Symmetries in Physics: Philosophical Reflections. Cambridge: Cambridge University Press.Google Scholar
  47. Saunders, Simon (2006). Are quantum particles objects? Analysis 66, 52–63.Google Scholar
  48. Stachel, John (2002). ‘The relations between things’ versus ‘The things between relations’: The deeper meaning of the hole argument. In D. B. Malament (Hg.), Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, 231–266. La Salle, IL: Open Court.Google Scholar
  49. Teller, Paul (1983). Quantum physics, the identity of indiscernibles and some unanswered questions. Philosophy of Science 50(2), 309–319.Google Scholar
  50. Weyl, Hermann (1928,21931). Gruppentheorie und Quantenmechanik. Leipzig: Hirzel.Google Scholar
  51. Weyl, Hermann (1952). Symmetry. Princeton: Princeton University Press.Google Scholar
  52. Weyl, Hermann (1966). Philosophie der Mathematik und Naturwissenschaft. München: Oldenbourg (3. erweiterte Auflage der erweiterten amerikanischen Ausgabe bei Princeton University Press 1949; 1. Auflage 1928).Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Lehrstuhl für Theoretische PhilosophieUniversität MagdeburgMagdeburgDeutschland

Personalised recommendations