Advertisement

Testis Embryology, Anatomy and Physiology

  • John HutsonEmail author
Chapter

Abstract

Testicular descent to the scrotum is one of the main hallmarks of male sexual differentiation. It is a complex, multi-staged process with the different stages controlled by separate hormones. The testis was not originally descended in vertebrates, but during the evolution of mammals the position of the male gonad has been relocated to the outside of the abdominal cavity. In most modern mammals the testis is now located in a perineal scrotum. By contrast, the scrotum in modern marsupials, such as the Kangaroo and Wallaby, is located in a pre-penile position directly over the external inguinal ring. Scrotal location of the testis is required to provide a specialised, low-temperature environment for optimal physiological function. This chapter will address the embryology, anatomy and physiology of the testis.

Keywords

Testicular descent Perineal scrotum Inguinalscrotal phase Gubernaculum Scrotal testis 

References

  1. 1.
    Barteczko KJ, Jacob MI. The testicular descent in human. Origin, development and fate of the gubernaculum Hunteri, processus vaginalis peritonei, and gonadal ligaments. Adv Anat Embryol Cell Biol. 2000;156:III–X, 1–98.Google Scholar
  2. 2.
    Hutson J, Hasthorpe S. Testicular descent and cryptorchidism: the state of the art in 2004. J Pediatr Surg. 2005;40:297–302.CrossRefPubMedGoogle Scholar
  3. 3.
    Hutson JM, Hasthorpe S, Heyns CF. Anatomical and functional aspects of testicular descent and cryptorchidism. Endocr Rev. 1997;18(2):259–80.PubMedGoogle Scholar
  4. 4.
    Renfree MB, Harry JL, Shaw G. The marsupial male: a role model for sexual development. Philos Trans R Soc Lond B Biol Sci. 1995;350(1333):243–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Zorgniotti A. Temperature and environmental effects on the testis. New York: Plenum Press; 1991.CrossRefGoogle Scholar
  6. 6.
    Bernard P, Harley VR. Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol. 2007;39(1):31–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346(6281):240–4.CrossRefPubMedGoogle Scholar
  8. 8.
    MacLaughlin DT, Donahoe PK. Sex determination and differentiation. N Engl J Med. 2004;350(4):367–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Nef S, Parada LF. Cryptorchidism in mice mutant for Insl3. Nat Genet. 1999;22(3):295–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Zimmermann S, Steding G, Emmen JM, et al. Targeted disruption of the Insl3 gene. Mol Endocrinol. 1999;13(5):681–91.CrossRefPubMedGoogle Scholar
  11. 11.
    Ivell R, Einspanier A. Relaxin peptides are new global players. Trends Endocrinol Metab. 2002;13(8):343–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Kubota Y, Temelcos C, Bathgate R, et al. The role of insulin 3, testosterone, Mullerian inhibiting substance and relaxin in rat gubernacular growth. Mol Hum Reprod. 2002;8:900–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Fu P, Layfield S, Ferraro T, et al. Synthesis, conformation, receptor binding and biological activities of monobiotinylated human insulin-like peptide 3. J Pept Res. 2004;63(2):91–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Ferlin A, Zuccarello D, Garolla A, et al. Hormonal and genetic control of testicular descent. Reprod Biomed Online. 2007;15(6):659–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Heyns C. The gubernaculum during testicular descent in the human fetus. J Anat. 1987;153:93–112.Google Scholar
  16. 16.
    Wensing C. Testicular descent in some domestic mammals. I. Anatomical aspect of testicular descent. Proc Kon Nederlande Akad Von Wetenschappen. 1968;71:423–34.Google Scholar
  17. 17.
    Hutson J. A biphasic model for the hormonal control of testicular descent. Lancet. 1985;2(8452):419–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Hutson J. Testicular feminisation—a model for testicular descent in mice and men. J Pediatric Surg. 1986;21:195–8.CrossRefGoogle Scholar
  19. 19.
    Welsh M, Saunders PT, Fisken M, et al. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest. 2008;118(4):1479–90.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hutson J. Pathophysiology of testicular descent: updates from experimental models. Asian J Surg. 1999;22(2):131–5.Google Scholar
  21. 21.
    Park W-H, Hutson J. A new inbred rat strain (TS) with suprainguinal ectopic testes: a model for human cryptorchidism. Pediatr Surg Int. 1991;6:172–5.CrossRefGoogle Scholar
  22. 22.
    Chan JJ, Farmer PJ, Southwell BR, et al. Calcitonin gene-related peptide is a survival factor, inhibiting apoptosis in neonatal rat gubernaculum in vitro. J Pediatr Surg. 2009;44(8):1497–501.CrossRefPubMedGoogle Scholar
  23. 23.
    Yong EX, Huynh J, Farmer P, et al. Calcitonin gene-related peptide stimulates mitosis in the tip of the rat gubernaculum in vitro and provides the chemotactic signals to control gubernacular migration during testicular descent. J Pediatr Surg. 2008;43(8):1533–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Huynh J, Shenker NS, Nightingale S, et al. Signalling molecules: clues from development of the limb bud for cryptorchidism? Pediatr Surg Int. 2007;23(7):617–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Muneoka K, Han M, Gardiner DM. Regrowing human limbs. Sci Am. 2008;298(4):56–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Veltmaat JM, Mailleux AA, Thiery JP, et al. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation. 2003;71(1):1–17.CrossRefPubMedGoogle Scholar
  27. 27.
    Coveney D, Shaw G, Hutson JM, et al. The development of the gubernaculum and inguinal closure in the marsupial Macropus eugenii. J Anat. 2002;201(3):239–56.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Griffiths M, Slater E. The significance of striated muscle in the mammary glands of marsupials. J Anat. 1988;156:141–56.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Nation TR, Balic A, Southwell BR, et al. The hormonal control of testicular descent. Pediatr Endocrinol Rev. 2009;7(1):22–31.PubMedGoogle Scholar
  30. 30.
    Balic A, Nation T, Buraundi S, et al. Hidden in plain sight: the mammary line in males may be the missing link regulating inguinoscrotal testicular descent. J Pediatr Surg 2010;45(2):414–8; discussion 418.Google Scholar
  31. 31.
    Nightingale SS, Western P, Hutson JM. The migrating gubernaculum grows like a “limb bud”. J Pediatr Surg. 2008;43(2):387–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Schwindt B, Farmer P, Watts L, et al. Localization of calcitonin gene-related peptide (CGRP) within the genitofemoral nerve (GFN) in immature rats. J Pediatr Surg. 1999;34:986–91.CrossRefPubMedGoogle Scholar
  33. 33.
    Al-Shamma HA, Arnold AP. Brain-derived neurotrophic factor regulates expression of androgen receptors in perineal motoneurons. Proc Natl Acad Sci U S A. 1997;94(4):1521–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Biasutto SN, Repetto E, Aliendo MM, et al. Inguinal canal development: the muscular wall and the role of the gubernaculum. Clin Anat. 2009;22(5):614–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Niikura H, Okamoto S, Nagase S, et al. Early development of the human gubernaculum revisited. Clin Anat. 2008;21:547–57.CrossRefPubMedGoogle Scholar
  36. 36.
    Parnis SJ, Roberts JP, Hutson JM. Anatomical landmarks of the inguinal canal in prepubescent children. Aust N Z J Surg. 1997;67(6):335–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Clarnette T, Hutson J. The genitofemoral nerve may link testicular inguinoscrotal descent with congenital inguinal hernia. Aust NZ J Surg. 1996;66(9):612–7.CrossRefGoogle Scholar
  38. 38.
    Clarnette T, Lam S, Hutson J. Ventriculo-peritoneal shunts in children reveal the natural history of closure of the processus vaginalis. J Pediatr Surg. 1998;33:413–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Agarwal PK, Diaz M, Elder JS. Retractile testis–is it really a normal variant? J Urol. 2006;175(4):1496–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Donaldson K, Tong S, Washburn T, et al. Morphometric study of the gubernaculum in male estrogen receptor mutant mice. J Androl. 1996;17(2):91–5.PubMedGoogle Scholar
  41. 41.
    Guven A, Kogan BA. Undescended testis in older boys: further evidence that ascending testes are common. J Pediatr Surg. 2008;43(9):1700–4.CrossRefPubMedGoogle Scholar
  42. 42.
    Redman JF. The ascending (acquired undescended) testis: a phenomenon? BJU Int. 2005;95(9):1165–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Wohlfahrt-Veje C, Boisen KA, Boas M, et al. Acquired cryptorchidism is frequent in infancy and childhood. Int J Androl. 2009;32(4):423–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Kaplan SL, Grumbach MM, Aubert ML. The ontogenesis of pituitary hormones and hypothalamic factors in the human fetus: maturation of central nervous system regulation of anterior pituitary function. Recent Prog Horm Res. 1976;32:161–243.PubMedGoogle Scholar
  45. 45.
    Baker SS, Liptak GS, Colletti RB, et al. Constipation in infants and children: evaluation and treatment. A medical position statement of the North American Society for Pediatric Gastroenterology and Nutrition. J Pediatr Gastroenterol Nutr. 1999;29(5):612–26.CrossRefPubMedGoogle Scholar
  46. 46.
    Gendrel D, Roger M, Job J-C. Plasma gonadotropin and testosterone values in infants with cryptorchidism. J Pediatr. 1980;97:217–20.CrossRefPubMedGoogle Scholar
  47. 47.
    Hadziselimovic F, Huff D. Gonadal differentiation–normal and abnormal testicular development. Adv Exp Med Biol 2002;511:15–21; discussion 21–3.Google Scholar
  48. 48.
    Huff D, Fenig D, Canning D, et al. Abnormal germ cell development in cryptorchidism. Karger. 2001;55:11–7.Google Scholar
  49. 49.
    Mieusset R, Fonda P, Vaysse P, et al. Increase in testicular temperature in case of cryptorchidism in boys. Fertil Steril. 1993;59:1319–21.Google Scholar
  50. 50.
    Ong C, Hasthorpe S, Hutson JM. Germ cell development in the descended and cryptorchid testis and the effects of hormonal manipulation. Pediatr Surg Int. 2005;21(4):240–54.CrossRefPubMedGoogle Scholar
  51. 51.
    Giwercman A, Hansen L, Skakkebaek N. Initiation of sperm production after bilateral orchiopexy: clinical and biological implications. J Urol. 2000;163:1255–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Jorgensen N,  Rajpert-De-Meyts E, Graem N, et al. Expression of immunohistochemical markers for testicular carcinoma in situ by normal human fetal germ cells. Lab Invest. 1995;72:223–31.PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Department of PaediatricsUniversity of MelbourneMelbourneAustralia
  2. 2.Department of UrologyRoyal Children’s HospitalMelbourneAustralia
  3. 3.Douglas Stephens Surgical Research Laboratory, Melbourne Royal Children’s HospitalMurdoch Children’s Research InstituteParkvilleAustralia

Personalised recommendations