Skip to main content

Biomaterials for Tendon Regeneration

  • Chapter
  • First Online:
Muscle and Tendon Injuries

Abstract

Tendon is a highly complex tissue that exhibits high mechanical strength, flexibility, and extensibility to perform movement and physical exercise. However, it is exposed at a high-risk of injury, namely, at the tendon–bone interface (TBi).

The tendon natural healing process occurs by reactive scar formation, giving origin to a tissue that does not have the same characteristics of native tendon. As a consequence the healing response is suboptimal causing scar tissue formation, which implies inferior mechanical properties.

Tissue engineering using biomaterials trying to regenerate tendon tissue and improve clinical outcomes when treating tendon pathology is the focus of intense investigation worldwide. The authors review tendon structure and healing process and summarize the current knowledge about biomaterials for tendon regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman G, Horan R, Martin I et al (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272

    CAS  PubMed  Google Scholar 

  • Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat 193(Pt 4):481–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamin M, Ralphs J (2000) The cell and developmental biology of tendons and ligaments. Int Rev Cytol 196:85–130

    Article  CAS  PubMed  Google Scholar 

  • Breidenbach AP, Gilday SD, Lalley AL et al (2014) Functional tissue engineering of tendon: establishing biological success criteria for improving tendon repair. J Biomech 47:1941–1948

    Article  PubMed  Google Scholar 

  • Butler DL, Dressler M, Awad H (2003) Functional tissue engineering: assessment of function in tendon and ligament repair. In: Functional tissue engineering. Springer, New York, pp 213–226

    Chapter  Google Scholar 

  • Carpenter JE, Thomopoulos S, Flanagan CL et al (1998) Rotator cuff defect healing: a biomechanical and histologic analysis in an animal model. J Shoulder Elb Surg 7:599–605

    Article  CAS  Google Scholar 

  • Carvalho MM, Teixeira FG, Reis RL et al (2011) Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Curr Stem Cell Res Ther 6:221–228

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Altman GH, Karageorgiou V et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67:559–570

    Article  PubMed  Google Scholar 

  • Chen J, Horan RL, Bramono D et al (2006) Monitoring mesenchymal stromal cell developmental stage to apply on-time mechanical stimulation for ligament tissue engineering. Tissue Eng 12:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Song XH, Yin Z et al (2009) Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells 27:1276–1287

    Article  CAS  PubMed  Google Scholar 

  • Chong AK, Chang J, Go JC (2009) Mesenchymal stem cells and tendon healing. Front Biosci (Landmark Ed) 14:4598–4605

    Article  CAS  Google Scholar 

  • Cornwell KG, Downing BR, Pins GD (2004) Characterizing fibroblast migration on discrete collagen threads for applications in tissue regeneration. J Biomed Mater Res A 71:55–62

    Article  PubMed  Google Scholar 

  • Cornwell KG, Lei P, Andreadis ST et al (2007) Crosslinking of discrete self-assembled collagen threads: effects on mechanical strength and cell–matrix interactions. J Biomed Mater Res A 80:362–371

    Article  PubMed  Google Scholar 

  • Deeken CR, Cozad MJ, Bachman SL et al (2011) Characterization of bionanocomposite scaffolds comprised of amine-functionalized single-walled carbon nanotubes crosslinked to an acellular porcine tendon. J Biomed Mater Res A 96:584–594

    Article  PubMed  Google Scholar 

  • Deng D, Liu W, Xu F et al (2009) Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials 30:6724–6730

    Article  CAS  PubMed  Google Scholar 

  • Doroski DM, Brink KS, Temenoff JS (2007) Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials 28:187–202

    Article  CAS  PubMed  Google Scholar 

  • Dyment NA, Galloway JL (2015) Regenerative biology of tendon: mechanisms for renewal and repair. Curr Mol Biol Rep 1:124–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan H, Liu H, Toh SL et al (2008) Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials 29:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Freeman JW, Woods MD, Laurencin CT (2007) Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. J Biomech 40:2029–2036

    Article  PubMed  Google Scholar 

  • Freeman JW, Woods MD, Cromer DA et al (2009) Tissue engineering of the anterior cruciate ligament: the viscoelastic behavior and cell viability of a novel braid–twist scaffold. J Biomater Sci Polym Ed 20:1709–1728

    Article  CAS  PubMed  Google Scholar 

  • Garner WL, Mcdonald JA, Koo M et al (1989) Identification of the collagen-producing cells in healing flexor tendons. Plast Reconstr Surg 83:875–879

    Article  CAS  PubMed  Google Scholar 

  • Gerber C, Schneeberger AG, Perren SM et al (1999) Experimental rotator cuff repair. A preliminary study. J Bone Joint Surg Am 81:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering--current challenges and expanding opportunities. Science 295:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Guelcher SA (2008) Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 14:3–17

    Article  CAS  PubMed  Google Scholar 

  • Guelcher SA, Srinivasan A, Dumas JE et al (2008) Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials 29:1762–1775

    Article  CAS  PubMed  Google Scholar 

  • Hakimi O, Murphy R, Stachewicz U et al (2012) An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair. Eur Cell Mater 24:344–357; discussion 357

    Google Scholar 

  • Hammoudi TM, Temenoff JS (2011) Biomaterials for regeneration of tendons and ligaments. In: Burdick JA, Mauck RL (eds) Biomaterials for tissue engineering applications: a review of the past and future trends. Springer Vienna, Vienna, pp 307–341

    Chapter  Google Scholar 

  • Hayami JW, Surrao DC, Waldman SD et al (2010) Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A 92:1407–1420

    PubMed  Google Scholar 

  • Heckmann L, Fiedler J, Mattes T et al (2008) Interactive effects of growth factors and three-dimensional scaffolds on multipotent mesenchymal stromal cells. Biotechnol Appl Biochem 49:185–194

    Article  CAS  PubMed  Google Scholar 

  • Hinsenkamp M, Muylle L, Eastlund T et al (2012) Adverse reactions and events related to musculoskeletal allografts: reviewed by the World Health Organisation Project NOTIFY. Int Orthop 36:633–641

    Article  CAS  PubMed  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  CAS  PubMed  Google Scholar 

  • Hope M, Saxby TS (2007) Tendon healing. Foot Ankle Clin 12:553–567

    Article  PubMed  Google Scholar 

  • Huegel J, Williams AA, Soslowsky LJ (2015) Rotator cuff biology and biomechanics: a review of normal and pathological conditions. Curr Rheumatol Rep 17:476

    Article  PubMed  Google Scholar 

  • James R, Kesturu G, Balian G et al (2008) Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am 33:102–112

    Article  PubMed  Google Scholar 

  • Juncosa-Melvin N, Matlin KS, Holdcraft RW et al (2007) Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng 13:1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Khatod M, Amiel D (2003) Ligament biochemistry and physiology. In: Pedowitz R, O’Connor JJ, Akeson WH (eds) Daniel’s knee injuries. Lippincott Williams and Wilkins, Philadelphia, pp 31–42

    Google Scholar 

  • Khatod M, Akeson W, Amiel D (2003) Ligament injury and repair. In: Pedowitz RA, O’Connor JJ, Akeson WH (eds) Daniel’s knee injuries. Lippincott Williams and Wilkins, Philadelphia, pp 185–201

    Google Scholar 

  • Khorshidi S, Solouk A, Mirzadeh H et al (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10:715–738

    Article  CAS  PubMed  Google Scholar 

  • Kirkendall DT, Garrett WE (1997) Function and biomechanics of tendons. Scand J Med Sci Sports 7:62–66

    Article  CAS  PubMed  Google Scholar 

  • Kovacevic D, Rodeo SA (2008) Biological augmentation of rotator cuff tendon repair. Clin Orthop Relat Res 466:622–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Krampera M, Pizzolo G, Aprili G et al (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683

    Article  CAS  PubMed  Google Scholar 

  • Kwan KH, Yeung KW, Liu X et al (2014) Silver nanoparticles alter proteoglycan expression in the promotion of tendon repair. Nanomedicine 10:1375–1383

    Article  CAS  PubMed  Google Scholar 

  • Ladermann A, Denard PJ, Collin P (2015) Massive rotator cuff tears: definition and treatment. Int Orthop 39:2403–2414

    Article  PubMed  Google Scholar 

  • Lange-Consiglio A, Rossi D, Tassan S et al (2013) Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: immunomodulatory activity in vitro and first clinical application in tendon and ligament injuries in vivo. Stem Cells Dev 22:3015–3024

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  • Laurencin CT, Freeman JW (2005) Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 26:7530–7536

    Article  CAS  PubMed  Google Scholar 

  • Liao S, Chan CK, Ramakrishna S (2008) Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C 28:1189–1202

    Article  CAS  Google Scholar 

  • Lorbach O, Baums MH, Kostuj T et al (2015) Advances in biology and mechanics of rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 23:530–541

    Article  PubMed  Google Scholar 

  • Lui PP (2015) Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning 7:163–174

    Google Scholar 

  • Lui PP, Kong SK, Lau PM et al (2014) Allogeneic tendon-derived stem cells promote tendon healing and suppress immunoreactions in hosts: in vivo model. Tissue Eng Part A 20:2998–3009

    Article  CAS  PubMed  Google Scholar 

  • Maffulli N, Wong J, Almekinders LC (2003) Types and epidemiology of tendinopathy. Clin Sports Med 22:675–692

    Article  PubMed  Google Scholar 

  • Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. Biochim Biophys Acta 1834:2380–2384

    Article  CAS  PubMed  Google Scholar 

  • Malafaya PB, Silva GA, Reis RL (2007) Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    Article  CAS  PubMed  Google Scholar 

  • Miller R, Azar F (2008) Knee injuries. In: Canale S, Beaty J (eds) Campbell’s operative orthopaedics. Mosby Elsevier, Philadelphia, pp 2346–2575

    Google Scholar 

  • Mora MV, Iban MAR, Heredia JD et al (2015) Stem cell therapy in the management of shoulder rotator cuff disorders. World J Stem Cells 7:691–699

    Article  PubMed Central  Google Scholar 

  • Moreau JE, Bramono DS, Horan RL et al (2008) Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng A 14:1161–1172

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    Article  CAS  PubMed  Google Scholar 

  • Parchi PD, Vittorio O, Andreani L et al (2016) Nanoparticles for tendon healing and regeneration: literature review. Front Aging Neurosci 8

    Google Scholar 

  • Paxton JZ, Donnelly K, Keatch RP et al (2008) Engineering the bone–ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng A 15:1201–1209

    Article  Google Scholar 

  • Petrigliano FA, Mcallister DR, Wu BM (2006) Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy 22:441–451

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Raffa V, Gherardini L, Vittorio O et al (2011) Carbon nanotube-mediated wireless cell permeabilization: drug and gene uptake. Nanomedicine 6:1709–1718

    Article  CAS  PubMed  Google Scholar 

  • Rodeo SA, Potter HG, Kawamura S et al (2007) Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am 89:2485–2497

    PubMed  Google Scholar 

  • Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999

    Article  Google Scholar 

  • Salgado AJ, Gimble JM (2013) Secretome of mesenchymal stem/stromal cells in regenerative medicine. Biochimie 95:2195

    Article  CAS  PubMed  Google Scholar 

  • Salgado AJ, Sousa JC, Costa BM et al (2015) Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci 9:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevivas N, Teixeira FG, Portugal R, Araujo L, Carrico LF, Ferreira N et al (2016) Mesenchymal stem cell secretome: A potential tool for the prevention of muscle degenerative changes associated with chronic rotator cuff tears. Am J Sports Med. doi:10.1177/0363546516657827

  • Sharma P, Maffulli N (2005) Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 87:187–202

    PubMed  Google Scholar 

  • Shearn JT, Juncosa-Melvin N, Boivin GP et al (2007) Mechanical stimulation of tendon tissue engineered constructs: effects on construct stiffness, repair biomechanics, and their correlation. J Biomech Eng 129:848–854

    Article  PubMed  Google Scholar 

  • Shimode K, Iwasaki N, Majima T et al (2007) Bone marrow stromal cells act as feeder cells for tendon fibroblasts through soluble factors. Tissue Eng 13:333–341

    Article  CAS  PubMed  Google Scholar 

  • Smith RK, Webbon PM (2005) Harnessing the stem cell for the treatment of tendon injuries: heralding a new dawn? Br J Sports Med 39:582–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sow WT, Lui YS, Ng KW (2013) Electrospun human keratin matrices as templates for tissue regeneration. Nanomedicine 8:531–541

    Article  CAS  PubMed  Google Scholar 

  • Spalazzi JP, Dagher E, Doty SB et al (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86:1–12

    Article  PubMed  Google Scholar 

  • Spindler KP, Kuhn JE, Freedman KB et al (2004) Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring does it really matter? A systematic review. Am J Sports Med 32:1986–1995

    Article  PubMed  Google Scholar 

  • Teixeira FG, Carvalho MM, Sousa N et al (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70:3871–3882

    Article  CAS  PubMed  Google Scholar 

  • Teixeira FG, Carvalho MM, Neves-Carvalho A et al (2015) Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev 11:288–297

    Article  CAS  PubMed  Google Scholar 

  • Thorpe CT, Screen HR (2016) Tendon structure and composition. Adv Exp Med Biol 920:3–10

    Article  PubMed  Google Scholar 

  • Torres DS, Freyman TM, Yannas IV et al (2000) Tendon cell contraction of collagen–GAG matrices in vitro: effect of cross-linking. Biomaterials 21:1607–1619

    Article  CAS  PubMed  Google Scholar 

  • Van Eijk F, Saris DB, Creemers LB et al (2008) The effect of timing of mechanical stimulation on proliferation and differentiation of goat bone marrow stem cells cultured on braided PLGA scaffolds. Tissue Eng A 14:1425–1433

    Article  Google Scholar 

  • Vieira A, Guedes R, Marques A (2009) Development of ligament tissue biodegradable devices: a review. J Biomech 42:2421–2430

    Article  CAS  PubMed  Google Scholar 

  • Vunjak-Novakovic G, Altman G, Horan R et al (2004) Tissue engineering of ligaments. Annu Rev Biomed Eng 6:131–156

    Article  CAS  PubMed  Google Scholar 

  • Wang JH (2006) Mechanobiology of tendon. J Biomech 39:1563–1582

    Article  PubMed  Google Scholar 

  • Wang B, Liu W, Zhang Y et al (2008) Engineering of extensor tendon complex by an ex vivo approach. Biomaterials 29:2954–2961

    Article  CAS  PubMed  Google Scholar 

  • Webb K, Hitchcock RW, Smeal RM et al (2006) Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39:1136–1144

    Article  PubMed  Google Scholar 

  • Woo SL, Hildebrand K, Watanabe N et al (1999) Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res 367:S312–S323

    Article  Google Scholar 

  • Woo SL-Y, Abramowitch SD, Kilger R et al (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39:1–20

    Article  PubMed  Google Scholar 

  • Yagi H, Soto-Gutierrez A, Parekkadan B et al (2010) Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant 19:667–679

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G, Rothrauff BB, Tuan RS (2013a) Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today 99:203–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhang J, Qian Y et al (2013b) Superparamagnetic iron oxide is suitable to label tendon stem cells and track them in vivo with MR imaging. Ann Biomed Eng 41:2109–2119

    Article  PubMed  PubMed Central  Google Scholar 

  • Young RG, Butler DL, Weber W et al (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang L, Zhao W et al (2013) Nanoparticle-mediated delivery of TGF-β1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials 34:8269–8278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Sevivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Sevivas, N. et al. (2017). Biomaterials for Tendon Regeneration. In: Canata, G., d'Hooghe, P., Hunt, K. (eds) Muscle and Tendon Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54184-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54184-5_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54183-8

  • Online ISBN: 978-3-662-54184-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics