Skip to main content

Functional Morphology of Muscles and Tendons

  • Chapter
  • First Online:
Muscle and Tendon Injuries

Abstract

The combined action of muscles and connective tissue, including the tendons, exerting force on the bones of the skeleton is responsible for the movement and stability of the body. Herein we discuss multiple aspects of the skeletal muscles and tendons. We describe each tissue individually, starting with an explanation of the different muscle types as well as the anatomy of skeletal muscle, focusing on the anatomy and action of the sarcomere. The classification of the diverse fascicular arrangements found in skeletal muscle precedes the description of the different muscle fibres and the relationship between the muscle motor unit and the nervous system.

In the second half of the chapter, we turn our attention to the tendon, looking at the microstructure, function and biochemical composition. The major constituents of the tendon and the cellular component are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarkova I, Perriard JC (2005) The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol 15(9):477–485

    Article  CAS  PubMed  Google Scholar 

  • Avery NC, Bailey AJ (2005) Enzymic and non-enzymic cross-linking mechanism in relation to turnover of collagen: relevance to aging and exercise. Scand J Med Sci Sports 15:231–240

    Article  CAS  PubMed  Google Scholar 

  • Bailey AJ (2005) Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev 122:735–755

    Article  Google Scholar 

  • Charvet B (2012) Muscles. Ligaments Tendons 2(2):53–63

    Google Scholar 

  • De Campos VB (2003) Image analysis of tendon helical superstructure using interference and polarized light microscopy. Micron 34:423–432

    Article  Google Scholar 

  • Dyer RF, Enna CD (1976) Ultrastructural features of adult human tendon. Cell Tissue Res 168:247–259

    Article  CAS  PubMed  Google Scholar 

  • Galbraith CG, Sheetz MP (1998) Forces on adhesive contacts affect cell function. Curr Opin Cell Biol 10:566–571

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Sun W, Christofidou-Solomidou M et al (2003) PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis. Blood 102(1):169–179

    Article  CAS  PubMed  Google Scholar 

  • Gathercole LJ, Keller A (1991) Crimp morphology in the fibre-forming collagens. Matrix 11:214–234

    Article  CAS  PubMed  Google Scholar 

  • Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1347

    Article  CAS  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    CAS  PubMed  Google Scholar 

  • Huxley HE (2004) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271(8):1403–1415

    Article  CAS  PubMed  Google Scholar 

  • McCormick RJ (1999) Extracellular modifications to muscle collagen: implications for meat quality. Poult Sci 8:785–791

    Article  Google Scholar 

  • Parry DA, Barnes GRG, Craig AS (1978) A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B Biol Sci 203:305–321

    Article  CAS  PubMed  Google Scholar 

  • Paul CD, Shea J, Mahoney MR et al (2016) Interplay of the physical microenvironment, contact guidance, and intracellular signaling in cell decision making. FASEB J 30(6):2161–2170

    Article  CAS  PubMed  Google Scholar 

  • Perugia L, Postacchini F, Ippolito E (1981) I tendini, biologia-patologia-clinica. Masson Italia Editori, Milano

    Google Scholar 

  • Redaelli A, Montevecchi F (2007) Biomeccanica analisi multiscala di tessuti biologici. Patron Editore. 153–215

    Google Scholar 

  • Robbins JR, Vogel KG (1994) Regional expression of mRNA for proteoglycans and collagen in tendon. Eur J Cell Biol 64:264–270

    CAS  PubMed  Google Scholar 

  • Robbins JR, Evanko SP, Vogel KG (1997) Mechanical loading and TGF-beta‚ regulate proteoglycan synthesis in tendon. Arch Biochem Biophys 342(2):203–211

    Google Scholar 

  • Robins SP, Bailey AJ (1972) Age-related changes in collagen: the identification of reducible lysine-carbohydrate condensation products. Biochem Biophys Res Commun 48:76–84

    Article  CAS  PubMed  Google Scholar 

  • Rowe RW (1985) The structure of rat tail tendon fascicles. Connect Tissue Res 14:21–30

    Article  CAS  PubMed  Google Scholar 

  • Scott JE (1998) Proteoglycan-fibrillar collagen interactions. Biochem J 252(2):313–323

    Article  Google Scholar 

  • Scott JE (2001) Structure and function in extracellular matrices depend on interactions between anionic glycosaminoglycans. Pathol Biol 49(4):284–289

    Article  CAS  PubMed  Google Scholar 

  • Silver D, Miller J, Harrison R, Prockop DJ (1992) Helical model of nucleation and propagation to account for the growth of type-I collagen fibrils from symmetrical pointed tips: a special example of self-assembly of rod-like monomers. Proc Natl Acad Sci USA 89(20):9860–9864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strocchi R, Leonardi L, Guizzardi S et al (1985) Ultrastructural aspects of rat tail tendon sheaths. J Anat 140:57–67

    PubMed  PubMed Central  Google Scholar 

  • Vachon PH (2011) Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. J Signal Transduct 2011:738137. doi:10.1155/2011/738137

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JH (2000) Substrate deformation determines actin cytoskeleton reorganization: a mathematical modeling and experimental study. J Theor Biol 202:33–41

    Article  CAS  PubMed  Google Scholar 

  • Wang JH (2006) Mechanobiology of tendon. J Biomech 39(9):1563–1582

    Article  PubMed  Google Scholar 

  • Yoon JH, Halper J (2005) Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact 5:22–34

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe M. Peretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Fisher, J.N., Di Giancamillo, A., Roveda, E., Montaruli, A., Peretti, G.M. (2017). Functional Morphology of Muscles and Tendons. In: Canata, G., d'Hooghe, P., Hunt, K. (eds) Muscle and Tendon Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54184-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54184-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54183-8

  • Online ISBN: 978-3-662-54184-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics