Skip to main content

Host Environment: Scaffolds and Signaling (Tissue Engineering) Articular Cartilage Regeneration: Cells, Scaffolds, and Growth Factors

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Despite being a known problem for a long time, cartilage restoration is a relatively new field in orthopaedics. Multiple factors should be considered, such patient profile and the type of lesion. The situation is complicated by the lack of ability to self-repair of this tissue. For such reasons, there is no uniform approach to managing cartilage defects.Autologous chondrocyte transplantation is successfully applied to repair chondral or osteochondral defects and, lately, osteoarthritis early lesions. However, due to several disadvantages, variations of the technique and new strategies have been developed, converging in the tissue engineering approach, which associates to the cells biomimetic scaffolds that can be also treated with soluble or mechanical stimuli to enhance the regenerative potential.To overcome issues due to the loss of chondrocyte phenotype after expansion in monolayer, alternative cell populations have been investigated, such as stem cells, which present a higher stability in culture as well as other properties that make them attractive.Recently, to deal with the problems arising from the high costs of cell expansion and the need of a two-step surgery, natural growth factors combinations, like Platelet Rich Plasma and Bone Marrow Concentrate, have been investigated, with good outcomes. A drawback is the difficulty to standardize the preparations, due to patient variability.Although a variety of developments and good results, there is still a gap between research and clinical application of cartilage tissue engineering. To fill this gap, research should try to identify the optimal scaffold, fabrication technique, cell source, and signalling factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baghaban Eslaminejad M, Malakooty Poor E. Mesenchymal stem cells as a potent cell source for articular cartilage regeneration. World J Stem Cells. 2014;6:344–54.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang L, Hu J, et al. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009;37(1–2):1–57.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60:243–62.

    Article  CAS  PubMed  Google Scholar 

  4. Reddi AH, Becerra J, Andrades JA. Nanomaterials and hydrogel scaffolds for articular cartilage regeneration. Tissue Eng Part B Rev. 2011;17:301–5.

    Article  CAS  PubMed  Google Scholar 

  5. Grigolo B, Facchini A. Cartilage: anatomo-pathology classification. In: Berruto M, Condello V, Kon E, Peretti GM, Ronga M, editors. Cartilage e-book. Roma: CIC-Edizioni Internazionali; 2015. p. 9–14.

    Google Scholar 

  6. Phull A, Eon S, Abbas Q, et al. Applications of chondrocyte-based cartilage engineering: an overview. Biomed Res Int. 2016;2016:1879837.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yau AC, Holmdahl R. Rheumatoid arthritis: identifying and characterising polymorphisms using rat models. Dis Model Mech. 2016;9(10):1111–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris JD, Siston RA, Pan X, et al. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am. 2010;92:2220–33.

    Article  PubMed  Google Scholar 

  9. Ahmed TA, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev. 2010;16:305–29.

    Article  CAS  PubMed  Google Scholar 

  10. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):1986–96.

    Article  PubMed  Google Scholar 

  11. Giannini S, Buda R, Cavallo M, et al. Bipolar fresh osteochondral allograft for the treatment of glenohumeral post-traumatic arthritis. Knee Surg Sports Traumatol Arthrosc. 2012;20:1953–7.

    Article  PubMed  Google Scholar 

  12. Giannini S, Buda R, Grigolo B, et al. Bipolar fresh osteochondral allograft of the ankle. Foot Ankle Int. 2010;31(1):38–46.

    Article  PubMed  Google Scholar 

  13. Giannini S, Buda R, Ruffilli A, et al. Failures in bipolar fresh osteochondral allograft for the treatment of end-stage knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2015;23:2081–9.

    Article  CAS  PubMed  Google Scholar 

  14. Neri S, Vannini F, Desando G, et al. Ankle bipolar fresh osteochondral allograft survivorship and integration: transplanted tissue genetic typing and phenotypic characteristics. J Bone Joint Surg Am. 2013;95:1852–60.

    Article  PubMed  Google Scholar 

  15. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.

    Article  CAS  PubMed  Google Scholar 

  16. Cao Z, Dou C, Dong S. Scaffolding biomaterials for cartilage regeneration. J Nanomater. 2014;2014:89128.

    Article  Google Scholar 

  17. Lisignoli G, Grassi F, Zini N, et al. Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis Rheum. 2001;44:1800–7.

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Zhang Q, Nakamoto T, et al. Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Eng Part C Methods. 2016;22:189–98.

    Article  CAS  PubMed  Google Scholar 

  19. Li WJ, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26:599–609.

    Article  CAS  PubMed  Google Scholar 

  20. Ding C, Qiao Z, Jiang W, et al. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials. 2013;34:6706–16.

    Article  CAS  PubMed  Google Scholar 

  21. Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials. 2016;98:1–22.

    Article  CAS  PubMed  Google Scholar 

  22. Iwasa J, Engebretsen L, Shima Y, et al. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc. 2009;17:561–77.

    Article  PubMed  Google Scholar 

  23. Grigolo B, Lisignoli G, Piacentini A, et al. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAFF-11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials. 2002;23:1187–95.

    Article  CAS  PubMed  Google Scholar 

  24. Grigolo B, De Franceschi L, Roseti L, et al. Down regulation of degenerative cartilage molecules in chondrocytes grown on a hyaluronan-based scaffold. Biomaterials. 2005;26:5668–76.

    Article  CAS  PubMed  Google Scholar 

  25. Cavallo C, Desando G, Facchini A, et al. Chondrocytes from patients with osteoarthritis express typical extracellular matrix molecules once grown onto a three-dimensional hyaluronan-based scaffold. J Biomed Mater Res A. 2010;93:86–95.

    PubMed  Google Scholar 

  26. Grigolo B, Desando G, Cavallo C, et al. Evaluation of chondrocyte behavior in a new equine collagen scaffold useful for cartilage repair. J Biol Regul Homeost Agents. 2011;25:S53–62.

    CAS  PubMed  Google Scholar 

  27. Roseti L, Bassi A, Grigolo B, et al. Development of human chondrocyte-based medicinal products for autologous cell therapy. In: Pignatello R, editor. Biomaterials science and engineering. InTech; 2011. doi: 10.5772/24954.

  28. Filardo G, Perdisa F, Roffi A, et al. Stem cells in articular cartilage regeneration. J Orthop Surg Res. 2016;11:42.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Facchini A, Lisignoli G, Cristino S, et al. Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold. Biorheology. 2006;43:471–80.

    PubMed  Google Scholar 

  30. Grigolo B, Fiorini M, Manferdini C, et al. Chemical-physical properties and in vitro cell culturing of a novel biphasic bio-mimetic scaffold for osteo-chondral tissue regeneration. J Biol Regul Homeost Agents. 2011;25:S3–S13.

    Google Scholar 

  31. Manferdini C, Cavallo C, Grigolo B, et al. Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration. J Tissue Eng Regen Med. 2016;10:374–91.

    Article  CAS  PubMed  Google Scholar 

  32. Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11:21–34.

    Article  CAS  PubMed  Google Scholar 

  33. Betsch M, Schneppendahl J, Thuns S, et al. Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PLoS One. 2013;8:e71602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cavallo C, Desando G, Cattini L, et al. Bone marrow concentrated cell transplantation: rationale for its use in the treatment of human osteochondral lesions. J Biol Regul Homeost Agents. 2013;27:165–75.

    CAS  PubMed  Google Scholar 

  35. Cavallo C, Desando G, Columbaro M, et al. Chondrogenic differentiation of bone marrow concentrate grown onto a hylauronan scaffold: rationale for its use in the treatment of cartilage lesions. J Biomed Mater Res A. 2013;101:1559–70.

    Article  PubMed  Google Scholar 

  36. Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44(11):2846–54.

    Article  PubMed  Google Scholar 

  37. Grigolo B, Cavallo C, Desando G, et al. Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells. J Mater Sci Mater Med. 2015;26:173.

    Article  PubMed  Google Scholar 

  38. Grigolo B, Roseti L, Neri S, et al. Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes: maintenance of differentiated phenotype under defined culture conditions. Osteoarthr Cartil. 2002;10:879–89.

    Article  CAS  PubMed  Google Scholar 

  39. Scotto d’Abusco A, Calamia V, Cicione C, et al. Glucosamine affects intracellular signalling through inhibition of mitogen-activated protein kinase phosphorylation in human chondrocytes. Arthritis Res Ther. 2007;9:R104.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scotto d’Abusco A, Cicione C, Calamia V, et al. Glucosamine and its N-acetyl-phenylalanine derivative prevent TNF-alpha-induced transcriptional activation in human chondrocytes. Clin Exp Rheumatol. 2007;25:847–52.

    PubMed  Google Scholar 

  41. Fortier LA, Barker JU, Strauss EJ, et al. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469:2706–15.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tuan RS, Chen AF, Klatt BA. Cartilage regeneration. Acad Orthop Surg. 2013;21:303–11.

    Google Scholar 

  43. Gobbi A, Karnatzikos G, Scotti C, et al. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage. 2011;2:286–99.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cavallo C, Filardo G, Mariani E, Kon E, et al. Comparison of platelet-rich plasma formulations for cartilage healing: an in vitro study. J Bone Joint Surg Am. 2014;96:423–9.

    Google Scholar 

  45. Roffi A, Filardo G, Assirelli E, et al. Does platelet-rich plasma freeze-thawing influence growth factor release and their effects on chondrocytes and synoviocytes? Biomed Res Int. 2014;2014:692913.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cavallo C, Roffi A, Grigolo B, et al. Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. Biomed Res Int. 2016;2016:6591717.

    Article  PubMed  PubMed Central  Google Scholar 

  47. DuRaine GD, Brown WE, Hu JC, et al. Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages. Ann Biomed Eng. 2015;43:543–54.

    Article  PubMed  Google Scholar 

  48. Moriguchi Y, Tateishi K, Ando W, et al. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model. Biomaterials. 2013;34(9):2185–93.

    Article  CAS  PubMed  Google Scholar 

  49. Athanasiou KA, Eswaramoorthy R, Hadidi P, et al. Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng. 2013;15:115–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Francioli S, Cavallo C, Grigolo B, et al. Engineered cartilage maturation regulates cytokine production and interleukin-1β response. Clin Orthop Relat Res. 2011;469:2773–84.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Labusca L, Greisser U, Mashayekhi K. Emerging concepts for articular cartilage regeneration. J Bone Stem Res. 2016;2:014.

    Google Scholar 

  52. Grande DA, Pitman MI, Peterson L, et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res. 1989;7:208–18.

    Article  CAS  PubMed  Google Scholar 

  53. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med. 2010;38:1117–24.

    Article  PubMed  Google Scholar 

  54. Grigolo B, Roseti L, De Franceschi L, et al. Molecular and immunohistological characterization of human cartilage two years following autologous cell transplantation. J Bone Joint Surg Am. 2005;87:46–57.

    PubMed  Google Scholar 

  55. De Franceschi L, Grigolo B, Roseti L, et al. Transplantation of chondrocytes seeded on collagen-based scaffold in cartilage defects in rabbits. J Biomed Mater Res A. 2005;75:612–22.

    Article  PubMed  Google Scholar 

  56. Grigolo B, Roseti L, Fiorini M, et al. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials. 2001;22:2417–24.

    Article  CAS  PubMed  Google Scholar 

  57. Ferruzzi A, Calderoni P, Grigolo B, et al. Autologous chondrocytes implantation: indications and results in the treatment of articular cartilage lesions of the knee. Chir Organi Mov. 2004;89:125–34.

    CAS  PubMed  Google Scholar 

  58. Giannini S, Buda R, Faldini C, et al. Surgical treatment of osteochondral lesions of the talus in young active patients. J Bone Joint Surg Am. 2005;87(Suppl 2):28–41.

    PubMed  Google Scholar 

  59. Giannini S, Buda R, Grigolo B, et al. Autologous chondrocyte transplantation in osteochondral lesions of the ankle joint. Foot Ankle Int. 2001;22:513–7.

    Article  CAS  PubMed  Google Scholar 

  60. Giannini S, Buda R, Vannini F, et al. Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: surgical technique and results. Am J Sports Med. 2008;36:873–80.

    Article  PubMed  Google Scholar 

  61. Giannini S, Buda R, Grigolo B, et al. The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint. Osteoarthr Cartil. 2005;13:601–7.

    Article  CAS  PubMed  Google Scholar 

  62. Desando G, Cavallo C, Tschon M, et al. Early-term effect of adult chondrocyte transplantation in an osteoarthritis animal model. Tissue Eng Part A. 2012;18:1617–27.

    Article  CAS  PubMed  Google Scholar 

  63. Vasiliadis HS, Wasiak J. Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev. 2010;(10):CD003323.

    Google Scholar 

  64. Grigolo B, Lisignoli G, Desando G, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng Part C Methods. 2009;15:647–58.

    Article  CAS  PubMed  Google Scholar 

  65. Desando G, Cavallo C, Sartoni F, et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther. 2013;15:R22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fischer S, Kisser A. Single-step scaffold-based cartilage repair in the knee: a systematic review. J Orthop. 2016;13:246–53.

    Article  PubMed  Google Scholar 

  67. Buda R, Vannini F, Cavallo M, et al. Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J Bone Joint Surg Am. 2010;92(Suppl 2):2–11.

    Article  PubMed  Google Scholar 

  68. Giannini S, Buda R, Vannini F, et al. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467:3307–20.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Desando G, Giavaresi G, Cavallo C, et al. Autologous bone marrow concentrate in a sheep model of osteoarthritis: new perspectives for cartilage and meniscus repair. Tissue Eng Part C Methods. 2016;22:608–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondi Cinque per Mille (Ministero della Salute, Italy) and by Progetto Regione Emilia Romagna Università 2010-2012 “Regenerative medicine of cartilage and bone”.

To “our Prof.” Andrea Facchini

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brunella Grigolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Roseti, L., Grigolo, B. (2017). Host Environment: Scaffolds and Signaling (Tissue Engineering) Articular Cartilage Regeneration: Cells, Scaffolds, and Growth Factors. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics