Skip to main content

Clinical Orthobiological Approach to Acute Cartilage Injury: Pros and Cons

  • Chapter
  • First Online:

Abstract

Articular cartilage has the ability to absorb stress, create low friction and high resistance to wear, which provide smooth joint movement and weight-bearing capabilities. To enable these special properties, cartilage has a peculiar structure. Articular cartilage is composed of a small number of chondrocytes and extracellular matrix (ECM). Chondrocytes constitute approximately 1% of the cartilage tissue and play a role in maintaining a healthy ECM. The ECM consists of a network of collagen fibrils with proteoglycan. Type 2 collagen is the main component, with Type 9 and 11 constituting minor components. The structure of the articular cartilage is divided into four zones: the superficial, transition, deep, and calcified zone. Each zone has a different cell size, shape, number, and content, comprising different properties of ECM. The tidemark anchors cartilage tissue to the subchondral bone plate. Notably, cartilage has neither vascularity nor nerves, which make spontaneous repair difficult [1]. Thus, untreated cartilage defects, especially those greater than 1.5 cm in diameter, will eventually progress to osteoarthritis (OA). To prevent the progression of OA after cartilage injury, the diagnosis and choice of appropriate treatment in the acute phase of OA is crucial to the achievement of biological healing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Newman AP. Articular cartilage repair. Am J Sports Med. 1998;26:309–24.

    CAS  PubMed  Google Scholar 

  2. Flick AB, Gould N. Osteochondritis dissecans of the talus (transchondral fractures of the talus): review of the literature and new surgical approach for medial dome lesions. Foot Ankle. 1985;5(4):165–84.

    Article  CAS  PubMed  Google Scholar 

  3. O’Donoghue DH. Chondral and osteochondral fractures. J Trauma. 1966;6(4):469–81.

    Article  PubMed  Google Scholar 

  4. Kennedy JC, Grainger RW, McGraw RW. Osteo-chondral fractures of the femoral condyles. J Bone Joint Surg Br. 1966;48(3):436–40.

    Google Scholar 

  5. Terry GC, Flandry F, Van Manen JW, Norwood LA. Isolated chondral fractures of the knee. Clin Orthop Relat Res. 1988;234:170–7.

    Google Scholar 

  6. Maffulli N, Binfield PM, King JB, Good CJ. Acute haemarthrosis of the knee in athletes. A prospective study of 106 cases. J Bone Joint Surg Br. 1993; 75(6):945–9.

    CAS  PubMed  Google Scholar 

  7. Noyes FR, Bassett RW, Grood ES, Butler DL. Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am. 1980;62(5):687–95.

    Article  CAS  PubMed  Google Scholar 

  8. Sorrento DL, Mlodzienski A. Incidence of lateral talar dome lesions in SER IV ankle fractures. J Foot Ankle Surg. 2000;39(6):354–8.

    Article  CAS  PubMed  Google Scholar 

  9. Takao M, Ochi M, Uchio Y, Naito K, Kono T, Oae K. Osteochondral lesions of the talar dome associated with trauma. Arthroscopy. 2003;19(10):1061–7.

    Article  PubMed  Google Scholar 

  10. Hintermann B, Regazzoni P, Lampert C, Stutz G, Gachter A. Arthroscopic findings in acute fractures of the ankle. J Bone Joint Surg Br. 2000;82(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson DL, Urban Jr WP, Caborn DN, Vanarthos WJ, Carlson CS. Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med. 1998;26(3):409–14.

    CAS  PubMed  Google Scholar 

  12. Lahm A, Erggelect C, Steinwachs M, Reichelt A. Articular and osseous lesions in recent ligament tears: arthroscopic changes compared with magnetic resonance imaging findings. Arthroscopy. 1998;14(6):597–604.

    Article  CAS  PubMed  Google Scholar 

  13. Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology. 2002;225(3):736–43.

    Article  PubMed  Google Scholar 

  14. Stanitski CL, Paletta Jr GA. Articular cartilage injury with acute patellar dislocation in adolescents. Arthroscopic and radiographic correlation. Am J Sports Med. 1998;26(1):52–5.

    CAS  PubMed  Google Scholar 

  15. Griffith JF, Lau DTY, Yeung DKW, Wong MWN. High-resolution MR-imaging of talar osteochondral lesions with new classification. Skelet Radiol. 2012;41(4):387–99.

    Article  Google Scholar 

  16. Milgram JW, Rogers LF, Miller JW. Osteochondral fractures: mechanisms of injury and fate of fragments. AJR Am J Roentgenol. 1978;130(4):651–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dainer RD, Barrack RL, Buckley SL, Alexander AH. Arthroscopic treatment of acute patellar dislocations. Arthroscopy. 1988;4(4):267–71.

    Article  CAS  PubMed  Google Scholar 

  18. Bohndorf K. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skelet Radiol. 1999;28(10):545–60.

    Article  CAS  Google Scholar 

  19. Verhagen RA, Maas M, Dijkgraaf MG, Tol JL, Krips R, van Dijk CN. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT? J Bone Joint Surg Br. 2005;87(1):41–6.

    CAS  PubMed  Google Scholar 

  20. Disler DG, McCauley TR, Kelman CG, et al. Fat-suppressed three-defects in the knee: comparison with standard MR imaging and arthroscopy. Am J Roentgenol. 1996;167(1):127–32.

    Article  CAS  Google Scholar 

  21. Slaughter AJ, Reynolds KA, Jambhekar K, David RM, Hasan SA, Pandey T. Clinical orthopedic examination findings in the lower extremity: correlation with imaging studies and diagnostic efficacy. Radiographics. 2014;34(2):E41–55.

    Article  PubMed  Google Scholar 

  22. Mintz DN, Tashjin GS, Connell DA, Deland JT, O’Malley M, Potter HG. Osteochondral lesions of the talus: a new magnetic resonance grading system with arthroscopic correlation. Arthroscopy. 2003;19(4):353–9.

    Article  PubMed  Google Scholar 

  23. Naran KN, Zoga AC. Osteochondral lesions about the ankle. Radiol Clin N Am. 2008;46(6):995–1002.

    Article  PubMed  Google Scholar 

  24. Schmid MR, Pfirrmann CWA, Holder J, Vienne P, Zanetti M. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skelet Radiol. 2003;32(5):259–65.

    Article  CAS  Google Scholar 

  25. Elias I, Zoga AC, Morrison WB, Bresser MP, Schweitzer ME, Raikin SM. Osteochondral lesions of the talus: localization and morphologic data from 424 patients using a novel anatomical grid scheme. Foot Ankle Int. 2007;28:154–61.

    Article  PubMed  Google Scholar 

  26. Pedersen ME, DaCambra MP, Jibri Z, Dhillon S, Jen H, Jomha NM. Acute osteochodral fractures in the lower extremities—approach to identification and treatment. Open Orthop J. 2015;9:463–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Smet AA, Ilahi OA, Graf BK. Untreated osteochondritis dissecans of the femoral condyles: prediction of patient outcome using radiographic and MR findings. Skelet Radiol. 1997;26(8):463–7.

    Article  Google Scholar 

  28. Hughston JC, Hergenroeder PT, Courtenay BG. Osteochondritis dissecans of the femoral condyles. J Bone Joint Surg Am. 1984;66(9):1340–8.

    Article  CAS  PubMed  Google Scholar 

  29. Adachi N, Motoyama M, Deie M, Ishikawa M, Arihiro K, Ochi M. Histological evaluation of internally-fixed osteochondral lesions of the knee. J Bone Joint Surg Br. 2009;91(6):823–9.

    Article  CAS  PubMed  Google Scholar 

  30. Koeter S, Loon CJM, Susante JLC. Fracture osteochonrale du condyle femoral lateral par luxationde la rotule. Eur J Orthop Surg Traumatol. 2005;16:268–70.

    Article  Google Scholar 

  31. Matsusue Y, Nakamura T, Suzuki S, Iwasaki R. Biodegradable pin fixation of osteochondral fragments of the knee. Clin Orthop Relat Res. 1996;322:166–73.

    Article  Google Scholar 

  32. Wouters DB, Burgerhof JG, de Hosson JT, Bos RR. Fixation of osteochondral fragments in the human knee using Meniscus Arrows. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):183–8.

    Article  PubMed  Google Scholar 

  33. Miura H, Nagamine R, Urabe K, et al. Complications associated with poly-L-lactic pins for treating osteochondritis dissecans of the knee. Arthroscopy. 1999;15:1–5.

    Article  Google Scholar 

  34. Scioscia TN, Griffin JR, Allen CR, Harner CD. Potential complication of bioabsorbable screw fixation for osteochondritis dissecans of the knee. Arthroscopy. 2001;17(2):E7.

    Article  CAS  PubMed  Google Scholar 

  35. Uchida R, Toritsuka Y, Yoneda K, Hamada M, Ohzono K, Horibe S. Chondral fragment of the lateral femoral trochlea of the knee in adolescents. Knee. 2012;19(5):719–23.

    Article  PubMed  Google Scholar 

  36. Nakayama H, Yoshiya S. Bone peg fixation of a large chondral fragment in the weight-bearing portion of the lateral femoral condyle in an adolescent: a case report. J Med Case Rep. 2014;8:316.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morris JK, Weber AE, Morris MS. Adolescent femoral chondral fragment fixation with poly-L-lactic acid chondral darts. Orthopaedics. 2016;39(2):e362–6.

    Article  Google Scholar 

  38. Buckwalter JA. Mechanical injuries of articular cartilage. Iowa Orthop J. 1992;12:50–7.

    PubMed Central  Google Scholar 

  39. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence based systemic analysis. Am J Sports Med. 2009;37:2053–63.

    Article  PubMed  Google Scholar 

  40. Hoemann CD, Gosselin Y, Chen H, et al. Characterization of initial microfracture defects in human condyles. J Knee Surg. 2013;26(5):347–55.

    Article  PubMed  Google Scholar 

  41. Adachi N, Ochi M, Deie M, Ito Y, Izuta Y. Lateral compartment osteoarthritis of the knee after meniscectomy treated by transplantation of tissue-engineered cartilage and osteochondral plug. Arthroscopy. 2006;22(1):107–12.

    Article  PubMed  Google Scholar 

  42. Adachi N, Ochi M, Deie M, Ito Y. Transplant of mesenchymal stem cells and hydroxyapatite ceramics to treat severe osteochondral damage after septic arthritis of the knee. J Rheumatol. 2005;32(8):1615–8.

    PubMed  Google Scholar 

  43. Adachi N, Ochi M, Deie M, et al. Implantation of tissue-engineered cartilage-like tissue for the treatment for full-thickness cartilage defects of the knee. Knee Surg Sports Traumatol Arthrosc. 2014; 22(6):1241–8.

    Article  PubMed  Google Scholar 

  44. Salzmann GM, Baumann GA, Preiss S. Spontaneous minced cartilage procedure for unexpectedly large femoral condyle surface defect. Case Rep Orthop. 2016;2016:1498135.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Albeit FH. Closure of joint cartilage defects using cartilage fragments and fibrin glue. Fortschr Med. 1983;101(37):1650–2.

    Google Scholar 

  46. Bonasia DE, Marmotti A, Rosso F, Collo G, Rossi R. Use of chondral fragments for one-stage cartilage repair: a systematic review. World J Orthop. 2015;6(11):1006–11.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marmotti A, Bruzzone M, Bonasia DE, et al. One-step osteochondral repair with cartilage fragments in a composite scaffold. Knee Surg Sports Traumatol Arthrosc. 2012;20:2590–601.

    Article  CAS  PubMed  Google Scholar 

  48. Lu Y, Dhanaraj S, Wang Z, et al. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res. 2006;24:1261–70.

    Article  PubMed  Google Scholar 

  49. Bonasia DE, Marmotti A, Mattia S, et al. The degree of chondral fragmentation affects extracellular matrix production in cartilage autograft implantation: an in vitro study. Arthroscopy. 2015;31(12):2335–41.

    Google Scholar 

  50. Cole BJ, Farr J, Winalski CS, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–9.

    Article  PubMed  Google Scholar 

  51. Tompkins M, Hamann JC, Diduch DR, et al. Preliminary results of a novel single-stage cartilage restoration technique: particulated juvenile articular cartilage allograft for chondral defects of the patella. Arthroscopy. 2013;29:1661–70.

    Article  PubMed  Google Scholar 

  52. Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-years prospective study. Am J Sports Med. 2014;42:1417–25.

    Article  PubMed  Google Scholar 

  53. Buckwalter JA, Bowman GN, Albright JP, Wolf BR, Bollier M. Clinical outcomes of patellar chondral lesions treated with juvenile particulated cartilage allografts. Iowa Orthop J. 2014;34:44–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18:1456–64.

    Article  CAS  PubMed  Google Scholar 

  55. Lee YH, Suzer F, Thermann H. Autologous matrix induced chondrogenesis in the knee: a review. Cartilage. 2014;5:145–53.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Patrscu JM, Freymann U, Kaps C, Poenaru DV. Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J Bone Joint Surg Br. 2010;92:1160–3.

    Article  Google Scholar 

  57. Siclari A, Mascaro G, Gentilili C, Cancedda R, Boux E. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin Orthop Relat Res. 2012;470:910–9.

    Article  PubMed  Google Scholar 

  58. Kusano T, Jakob RP, Gautier E, et al. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc. 2012;20:2109–15.

    Article  PubMed  Google Scholar 

  59. Gille J, Behrens P, Volpi P, et al. Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch Orthop Trauma Surg. 2013;133:87–93.

    Article  CAS  PubMed  Google Scholar 

  60. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  61. Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol. 2002;30:879–86.

    Article  CAS  PubMed  Google Scholar 

  62. McCarrel T, Fortier L. Temporal growth factor release from platelet rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res. 2009;27:1033–42.

    Article  CAS  PubMed  Google Scholar 

  63. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Cruz RS, LaPrada RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee. A systemic review of outcome. Orthop J Sports Med. 2016;4(1):2325967115625481.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multi-potent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42:648–57.

    Article  PubMed  Google Scholar 

  65. Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage. 2011;2:286–99.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Salamanna F, Veronesi F, Maglio M, et al. New and emerging strategies in plate-rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. Biomed Res Int. 2015;2015:846045.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Akeda K, An HS, Okuma M, et al. Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr Cartil. 2006;14:1272–80.

    Article  CAS  PubMed  Google Scholar 

  68. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376:440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sermer C, Devitt B, Chahal J, Kandel R, Theodoropoulos J. The addition of platelet-rich plasma to scaffolds used for cartilage repair: a review of human and animal studies. Arthroscopy. 2015;31:1607–25.

    Article  PubMed  Google Scholar 

  70. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8:153–70.

    Article  CAS  PubMed  Google Scholar 

  71. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469:2706–15.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mierisch CM, Cohen SB, Jordan LC, Robertson PG, Balian G, Diduch DR. Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy. 2002;18:892–900.

    Article  PubMed  Google Scholar 

  73. Bakker AC, van de Loo FAJ, van Beuningen HM, et al. Overexpression of active TGF-beta-1 in the murin knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthr Cartil. 2001;9:128–36.

    Google Scholar 

  74. Kuo AC, Rodrigo JJ, Reddi AH, Curtiss S, Grotkopp E, Chiu M. Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate arti-cular cartilage repair. Osteoarthr Cartil. 2006;14:1126–35.

    Google Scholar 

  75. Lopez-Morales Y, Abarrategi A, Ramos V, et al. In vivo comparison of the effects of rhBMP-2 and rhBMP-4 in osteochondral tissue regeneration. Eur Cell Mater. 2010;20:367–78.

    Google Scholar 

  76. Reyes R, Delgado A, Sanchez E, Fernandez A, Hernadez A, Evora C. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFbeta1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med. 2014;8(7):521–33.

    CAS  PubMed  Google Scholar 

  77. Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr Cartil. 2006;14:403–12.

    Google Scholar 

  78. Tiwary R, Amarpal AHP, Kinjavdekar P, Pawde AM, Singh R. Effect of IGF-I and uncultured autologous bone-marrow-derived mononuclear cells on repair of osteochondral defect in rabbits. Cartilage. 2014;5:43–54.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Elder BD, Athanasiou KA. Systemic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthr Cartil. 2009;17:114–23.

    Article  CAS  PubMed  Google Scholar 

  80. Ellman MB, An HS, Muddasani P, Im HJ. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene. 2008;420:82–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ishii I, Mizuta H, Sei A, Hirose J, Kudo S, Hiraki Y. Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br. 2007;89:693–700.

    Article  CAS  PubMed  Google Scholar 

  82. Maehara H, Sotome S, Yoshii T, et al. Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (Hap/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res. 2010;28:677–86.

    CAS  PubMed  Google Scholar 

  83. Khan IM, Palmer EA, Archer CW. Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1. Osteoarthr Cartil. 2010;18:208–19.

    Article  CAS  PubMed  Google Scholar 

  84. Cucchiarini M, Madry H, Ma C, et al. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther. 2005;12:229–38.

    Google Scholar 

  85. Cucchiarini M, Madry H. Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther. 2014;21:811–9.

    Google Scholar 

  86. Cucchiarini M, Orth P, Madry H. Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J Mol Med. 2013;91:625–36.

    Google Scholar 

  87. Neumann AJ, Schroeder J, Alni M, Archer CW, Stoddart MJ. Enhanced adenovirus transduction of hMSCs using 3D hydrogel cell carriers. Mol Biotechnol. 2013;53:207–16.

    Article  CAS  PubMed  Google Scholar 

  88. Sieker JT, Kunz M, Weißenberger M, et al. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthr Cartil. 2015;23(3):433–42.

    Article  CAS  PubMed  Google Scholar 

  89. Ivkovic A, Pascher A, Hudetz D, et al. Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther. 2010;17:779–89.

    Article  CAS  PubMed  Google Scholar 

  90. Ortved KF, Begum L, Mohammed HO, Nixon AJ. Implantation of rAA V5-IGF-I transduced autologous chondrocytes improves cartilage repair in full-thickness defects in the equine model. Mol Ther. 2015;23(2):363–73.

    Article  CAS  PubMed  Google Scholar 

  91. Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015;11(4):234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  93. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  CAS  PubMed  Google Scholar 

  94. Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: current status and future directions. Cancer Treat Rev. 2016;50:35–47.

    Article  CAS  PubMed  Google Scholar 

  95. Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58(5):1284–92.

    Google Scholar 

  96. Nakasa T, Nagata Y, Yamasaki K, Ochi M. A mini-review: microRNA in arthritis. Physiol Genomics. 2011;43(10):566–70.

    Article  CAS  PubMed  Google Scholar 

  97. Asahara H. Current status and strategy of microRNA research for cartilage development and osteoarthritis pathogenesis. J Bone Metab. 2016;23(3):121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Michell DL, Vickers KC. HDL and microRNA therapeutics in cardiovascular disease. Pharmacol Ther. 2016;168:43–52.

    Article  CAS  PubMed  Google Scholar 

  99. Shoji T, Nakasa T, Yamasaki K, et al. The effect of intra-articular injection of microRNA-210 on ligament healing in a rat model. Am J Sports Med. 2012;40(11):2470–8.

    Article  PubMed  Google Scholar 

  100. Kawanishi Y, Nakasa T, Shoji T, et al. Intra-articular injection of synthetic microRNA-210 accelerates vascular meniscal healing in rat medial meniscal injured model. Arthritis Res Ther. 2014;16(6):488.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Nakasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Nakasa, T., Adachi, N., Ochi, M. (2017). Clinical Orthobiological Approach to Acute Cartilage Injury: Pros and Cons. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics