Skip to main content

Emerging Orthobiologic Approach to Fractures

  • Chapter
  • First Online:
Book cover Bio-orthopaedics

Abstract

Sport medicine is a specialization, in which traumas and bone fractures are a very common problem. Long bone fractures like ulna, radius, tibia and fibula are most frequent. As orthopaedists we should know the alternative and less invasive forms of traumas treatment (non-surgical therapy) as well as a way to support and accelerate the tissues healing process, when traditional treatment is insufficient or ineffective. Both adolescent and adult athletes have to deal with this problem. Orthobiology is an innovative field of biomedical technology. This new regenerative branch of medicine allows a new therapeutic approach aimed at biological regeneration of tissues, rather than their replacement. Additionally, orthobiological treatment reduces the pain, which is the main problem reported by the athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gomez-Barrena E, Rosset P, Muller I, et al. Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med. 2011;15:1266–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gómez-Barrena R, Lozano D, et al. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone. 2015;70:93–101.

    Article  PubMed  Google Scholar 

  3. Lynch JR, Taitsman LA, Barei DP, Nork SE. Femoral nonunion: risk factors and treatment options. J Am Acad Orthop Surg. 2008;16(2):88–97.

    Article  PubMed  Google Scholar 

  4. Einhorn TA. The science of fracture healing. J Orthop Trauma. 2005;19(10 Suppl):4–6.

    Article  Google Scholar 

  5. Megas P, Syggelos SA, Kontakis G, et al. Intramedullary nailing for the treatment of aseptic femoral shaft non-unions after plating failure: effectiveness and timing. Injury. 2009;40(7):732–7.

    Article  PubMed  Google Scholar 

  6. Memeo A, Verdoni F, De Bartolomeo O, et al. A new way to treat forearm post-traumatic non-union in young patients with intramedullary nailing and platelet-rich plasma. Injury. 2014;45(2):418–23.

    Article  CAS  PubMed  Google Scholar 

  7. Ghaffarpasand F, Shahrezaei M, Dehghankhalili M. Effects of platelet rich plasma on healing rate of long bone non-union fractures: a randomized double-blind placebo controlled clinical trial. Bull Emerg Trauma. 2016;4(3):134–40.

    PubMed  PubMed Central  Google Scholar 

  8. Gołos J, Waliński T, Piekarczyk P, Kwiatkowski K. Results of the use of platelet rich plasma in the treatment of delayed union of long bones. Ortop Traumatol Rehabil. 2014;16(4):397–406.

    Article  PubMed  Google Scholar 

  9. Granero-Molto F, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009;27(8):1887–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alsousou J, Thompson M, Hulley P, et al. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br. 2009;91(8):987–96.

    Article  CAS  PubMed  Google Scholar 

  11. Casati L, Celotti F, Negri-Cesi P, et al. Platelet derived growth factor (PDGF) contained in Platelet Rich Plasma (PRP) stimulates migration of osteoblasts by reorganizing actin cytoskeleton. Cell Adh Migr. 2014;8(6):595–602.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guzel Y, Karalezli N, Bilge O, et al. The biomechanical and histological effects of platelet-rich plasma on fracture healing. Knee Surg Sports Traumatol Arthrosc. 2015;23(5):1378–83.

    Article  PubMed  Google Scholar 

  13. Gołos A, Treliński J. Clinical applications of platelet-rich plasma. Hematologia. 2014;5(3):252–9.

    Google Scholar 

  14. Tomoyasu A, Higashio K, Kanomata K, et al. Platelet-rich plasma stimulates osteoblastic differentiation in the presence of BMPs. Biochem Biophys Res Commun. 2007;361:62–7.

    Article  CAS  Google Scholar 

  15. Zhang N, Wu Y, Qian S, et al. Research progress in the mechanism of effect of PRP in bone deficiency healing. Sci World J. 2013;2013:134582.

    Google Scholar 

  16. Namazi H, Mehbudi A. Investigating the effect of intra-articular PRP injection on pain and function improvement in patients with distal radius fracture. Orthop Traumatol Surg Res. 2016;102(1):47–52.

    Article  CAS  Google Scholar 

  17. Grambart ST. Sports medicine and platelet-rich plasma: nonsurgical therapy. Clin Podiatr Med Surg. 2015;32(1):99–107.

    Article  Google Scholar 

  18. Gunay S, Candan H, Yılmaz R, et al. The efficacy of platelet-rich plasma in the treatment of rib fractures. Thorac Cardiovasc Surg. 2016. May 5. [Epub ahead of print].

    Google Scholar 

  19. Liebergall M, Schroeder J, Mosheiff R, et al. Stem cell–based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Mol Ther. 2013;21(8):1631–8.

    Article  CAS  PubMed Central  Google Scholar 

  20. Willits K, Kaniki N, Bryant D. The use of platelet-rich plasma in orthopedic injuries. Sports Med Arthrosc. 2013;21(4):225–30.

    Article  Google Scholar 

  21. Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33:1402–16.

    Article  CAS  Google Scholar 

  22. Bunnell B, Flaat M, Gagliardi C, et al. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008;45(2):115–20.

    Article  CAS  PubMed Central  Google Scholar 

  23. Gimble JM, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.

    Article  Google Scholar 

  24. Baer PC, Schubert R, Bereiter-Hahn J, et al. Expression of a functional epidermal growth factor receptor on human adipose-derived mesenchymal stem cells and its signaling mechanism. Eur J Cell Biol. 2009;88:273–83.

    Article  CAS  Google Scholar 

  25. Castillo-Cardiel G, López-Echaury AC, Saucedo-Ortiz JA, et al. Bone regeneration in mandibular fractures after the application of autologous mesenchymal stem cells, a randomized clinical trial. Dent Traumatol. 2017;33(1):38–44. doi:10.1111/edt.12303.

    Article  CAS  Google Scholar 

  26. Knight M, Hankenson KD. Mesenchymal stem cells in bone regeneration. Adv Wound Care (New Rochelle). 2013;2(6):306–16.

    Article  Google Scholar 

  27. Wang X, Wang Y, Gou W, et al. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013;37(12):2491–8.

    Article  PubMed Central  Google Scholar 

  28. Semyari H, Rajipour M, Sabetkish S, et al. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study. Cell Tissue Bank. 2016;17(1):69–83.

    Article  CAS  Google Scholar 

  29. Farrington-Rock C, Crofts NJ, Doherty MJ, et al. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation. 2004;110:2226–32.

    Article  CAS  Google Scholar 

  30. Da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–13.

    Article  Google Scholar 

  31. Klingemann H, Matzilevich D, Marchand J. Mesenchymal stem cells—sources and clinical applications. Transfus Med Hemother. 2008;35(4):272–7.

    Article  PubMed Central  Google Scholar 

  32. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed Central  Google Scholar 

  33. Fernandes G, Wang C, Yuan X, et al. Combination of controllably released platelet-rich plasma alginate beads and bone morphogenetic protein-2 gene-modified mesenchymal stem cells for bone regeneration. J Periodontol. 2016;87(4):470–80.

    Article  PubMed Central  Google Scholar 

  34. Labibzadeh N, Emadedin M, Fazeli R, Mohseni F, et al. Mesenchymal stromal cells implantation in combination with platelet lysate product is safe for reconstruction of human long bone nonunion. Cell J. 2016;18(3):302–9.

    PubMed Central  Google Scholar 

  35. Wittig O, Romano E, González C, et al. A method of treatment for nonunion after fractures using mesenchymal stromal cells loaded on collagen microspheres and incorporated into platelet-rich plasma clots. Int Orthop. 2016;40(5):1033–8.

    Article  Google Scholar 

  36. Yang D, Cheng J, Jing Z, Jin D. Platelet-derived growth factor (PDGF)-AA: a self-imposed cytokine in the proliferation of human fetal osteoblasts. Cytokine. 2000;12:1271–4.

    Article  CAS  Google Scholar 

  37. Rodriguez-Collazo ER, Urso ML. Combined use of the Ilizarov method, concentrated bone marrow aspirate (cBMA), and platelet-rich plasma (PRP) to expedite healing of bimalleolar fractures. Strategies Trauma Limb Reconstr. 2015;10(3):161–6.

    Article  PubMed Central  Google Scholar 

  38. Bonewald LF, Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clin Orthop. 1990;250:261–76.

    Google Scholar 

  39. Radhi IH, Al-Ghaban NM. Evaluation the effect of hyaluronic acid on bone healing process in rabbits (Immunohistochemical study for TGF-β). J Baghdad Coll Dent. 2015;27(1):111–6.

    Article  Google Scholar 

  40. Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone. 1995;16:9e15.

    Article  Google Scholar 

  41. Barba M, Cicione C, Bernardini C, et al. Adipose-derived mesenchymal cells for bone regereneration: state of the art. BioMed Res Int. 2013;2013:416391.

    Google Scholar 

  42. WAO S, Radwan DAEK, Hamid MAAE. The effect of adding hyaluronic acid to calcium phosphate on periapical tissue healing following periradicular surgery in dogs. Tanta Dent J. 2014;11:122e129.

    Google Scholar 

  43. Baldini A, Zaffe D, Nicolin G. Bone-defects healing by high-molecular hyaluronic acid: preliminary results. Ann Stomatol (Roma). 2010;1:2–7.

    Google Scholar 

  44. Hernigou P, et al. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005;87(7):1430–7.

    Google Scholar 

  45. Azuma Y, Ito M, Harada Y, et al. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16(4):671–80.

    Article  CAS  Google Scholar 

  46. Hemery X, Ohl X, Saddiki R, et al. Low-intensity pulsed ultrasound for non-union treatment: a 14-case series evaluation. Orthop Traumatol Surg Res. 2011;97:51–7.

    Article  CAS  Google Scholar 

  47. Yang RS, Lin WL, Chen YZ, et al. Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone. 2005;36:276–83.

    Article  CAS  PubMed  Google Scholar 

  48. Roussignol X, Currey C, Duparc F, et al. Indications and results for the ExogenTM ultrasound system in the management of non-union: a 59-case pilot study. Orthop Traumatol Surg Res. 2012;98:206–13.

    Article  CAS  PubMed  Google Scholar 

  49. Schofer M, Block JE, Aigner J, Schmelz A. Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial. As demonstrated in a non-union population of 101 patients. BMC Musculoskelet Disord. 2010;11:229.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Naruse K, Sekiya H, Harada Y, et al. Prolonged endochondral bone healing in senescence is shortened by low-intensity pulsed ultrasound in a manner dependent on COX-2. Ultrasound Med Biol. 2010;36(7):1098–108.

    Article  PubMed  Google Scholar 

  51. Fleish H. Bisphosphonates: mechanism of action. Endocr Rev. 1998;19:80–100.

    Article  Google Scholar 

  52. Schilcher J, Michaelsson K, Aspenberg P. Bisphosphonate use and atypical fractures of the femoral shaft. N Engl J Med. 2011;364:1728–37.

    Article  CAS  PubMed  Google Scholar 

  53. Pazianas M, Abrahamsen B. Safety of bisphosphonates. Bone. 2011;49:103–10.

    Article  CAS  PubMed  Google Scholar 

  54. Pazianas M, Kim S, Yuen T, et al. Questioning the association between bisphosphonates and atypical femoral fractures. Ann N Y Acad Sci. 2015;1335(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  55. Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2014;29:1–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin E. Domzalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Domzalski, M.E., Szkutnik, P. (2017). Emerging Orthobiologic Approach to Fractures. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics