Skip to main content

Clinical Orthobiologic Approach to Failure or Delay in Bone Healing

  • Chapter
  • First Online:
Bio-orthopaedics
  • 1953 Accesses

Abstract

Great part of the fractures heal spontaneously in the expected timing, if correctly treated, but approximately 5–10% don’t, with an incidence of 19 per 100,000. [1] Delayed unions and non-unions of long bone fractures, the latter defined by the Food and Drug Administration as fractures for which a minimum of 9 months has elapsed since the injury and for which there have been no signs of healing for 3 months, represent an important therapeutic challenge for the orthopaedic surgeons, but also an important social economic burden due to the morbidity, the costs and the disability to work that these conditions cause. Already in 1995, Einhorn and co-workers reported that, in the United States, of about 5.6 millions fractures treated, up to 10% do not heal completely [2] and this requires several complex and long-lasting type of treatments. Looking to what this means in terms of costs, in the UK, Dahabreh, Dimitriou and Giannoudis, in 2011 [3], reported that the treatment of one single case of non-union requires 13.844,68 pounds that is well related to what reported some years before in 2005 [4] for the costs sustained in Canada to treat a tibial shaft fracture, equal to 18.712 Canadian dollars. This pattern was ulteriorly emphasised in the epidemiological study conducted on 5,169,140 Scottish population, published in 2013, where the cost to the National Health Service of United Kingdom of treating a non-union has been reported to range between £7000 and £79,000 [5]. The authors reported that 4895 non-unions were treated as inpatients in Scotland between 2005 and 2010, averaging 979 per year, with an overall incidence of 18.94 per 100,000 population per year, with the gender distribution of 57% incidence in male and 43% in female and an overall age peak incidence in the fourth decade of life. Extrapolating from Scottish figures of 1000 cases of non-union per annum, the incidence of non-union in the United Kingdom is around 11,700 cases per annum. This would suggest that non-union costs the health services in the United Kingdom alone several hundreds of millions of pounds per year [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gómez-Barrena E, Russet P, Lozano D, et al. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone. 2015;70:93–101.

    Article  PubMed  Google Scholar 

  2. Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am. 1995;77:940–56.

    Article  CAS  PubMed  Google Scholar 

  3. Dahabreh Z, Dimitriou R, Giannoudis PV. Health economics: a cost analysis of treatment of persistent fracture non-unions using bone morphogenetic protein-7. Injury. 2007;38:371–7.

    Article  PubMed  Google Scholar 

  4. Busse JW, Bhandari M, Sprague S, Johnson-Masotti AP, Gafni A. An economic analysis of management strategies for closed and open grade I tibial shaft fractures. Acta Orthop. 2005;76:705–12.

    Article  PubMed  Google Scholar 

  5. Mills LA, Simpson AHRW. The relative incidence of fracture non-union in the Scottish population (5.17 million): a 5-year epidemiological study. BMJ Open. 2013;3:2.

    Article  Google Scholar 

  6. Mills L, Tsang J, Hopper G, Keenan G, Simpson AH. The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Joint Res. 2016;5(10):512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gaston MS, Simpson AHRW. Inhibition of fracture healing. J Bone Joint Surg Br. 2007;89:1553–60.

    Article  CAS  PubMed  Google Scholar 

  8. WHO. The global burden of disease: 2004 update. Geneva: World Health Organisation; 2008.

    Google Scholar 

  9. Zimmermann G, Müller U, Löffler C, Wentzensen A, Moghaddam A. [Therapeutic outcome in tibial pseudarthrosis: bone morphogenetic protein 7 (BMP-7) versus autologous bone grafting for tibial fractures]. Unfallchirurg. 2007;110:931–8.

    Google Scholar 

  10. Kettunen J, Mäkelä EA, Turunen V, Suomalainen O, Partanen K. Percutaneous bone grafting in the treatment of the delayed union and non-union of tibial fractures. Injury. 2002;33:239–45.

    Article  CAS  PubMed  Google Scholar 

  11. Betz RR. Limitations of autograft and allograft: new synthetic solutions. Orthopedics. 2002;25:s561–70.

    PubMed  Google Scholar 

  12. Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol. 2008;19:459–66.

    Article  CAS  PubMed  Google Scholar 

  13. Hernigou P, Pariat J, Queinnec S, Homma Y, Flouzat Lachaniette CE, Chevallier N, Rouard H. Supercharging irradiated allografts with mesenchymal stem cells improves acetabular bone grafting in revision arthroplasty. Int Orthop. 2014;38(9):1913–21.

    Article  PubMed  Google Scholar 

  14. Pountos I, Giannoudis PV. Biology of mesenchymal stem cells. Injury. 2005;36(Suppl 3):S8–S12.

    Article  PubMed  Google Scholar 

  15. Szilvassy SJ. The biology of hematopoietic stem cells. Arch Med Res. 2003;34:446–60.

    Article  CAS  PubMed  Google Scholar 

  16. Dominici M, Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  17. Iwakura T, Miwa M, Sakai Y, Niikura T, Lee SY, et al. Human hypertrophic nonunion tissue contains mesenchymal progenitor cells with multilineage capacity in vitro. J Orthop Res. 2009;27:208–15.

    Article  CAS  PubMed  Google Scholar 

  18. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6.

    Article  Google Scholar 

  19. Einhorn TA, Majeska RJ, Rush EB, et al. The expression of cytokine activity by fracture callus. J Bone Miner Res. 1995;10:1272–81.

    Article  CAS  PubMed  Google Scholar 

  20. Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury. 2007;38(Suppl 1):S11–25.

    Article  PubMed  Google Scholar 

  21. Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6:121–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64:1292–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA. Cell-based bone tissue engineering. PLoS Med. 2007;4(2):e9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng. 1997;3:173–85.

    Article  Google Scholar 

  25. Yoon E, Dhar S, Chun DE, Gharibjanian NA, Evans GRD. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng. 2007;13:619–27.

    Article  CAS  PubMed  Google Scholar 

  26. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49:328–37.

    Article  CAS  PubMed  Google Scholar 

  27. Shang Q, Wang Z, Liu W, Shi Y, Cui L, et al. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg. 2001;12:586–93.

    Article  CAS  PubMed  Google Scholar 

  28. Schliephake H, Knebel JW, Aufderheide M, Tauscher M. Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep. Int J Oral Maxillofac Surg. 2001;30:531–7.

    Article  CAS  PubMed  Google Scholar 

  29. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998;80:985–96.

    Article  CAS  PubMed  Google Scholar 

  30. Kruyt MC, Dhert WJ, Yuan H, Wilson CE, van Blitterswijk CA, et al. Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat. J Orthop Res. 2004;22:544–51.

    Article  CAS  PubMed  Google Scholar 

  31. Crowley C, Wong JM-L, Fisher DM, Khan WS. A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects. Curr Stem Cell Res Ther. 2013;8(3):243–52.

    Article  CAS  PubMed  Google Scholar 

  32. Liao Y, Zhang XL, Li L, Shen FM, Zhong MK. Stem cell therapy for bone repair: a systematic review and meta-analysis of preclinical studies with large animal models. Br J Clin Pharmacol. 2014;78:718–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aykan A, Ozturk S, Sahin I, Gurses S, Ural AU, Oren NC, Isik S. Biomechanical analysis of the effect of mesenchymal stem cells on mandibular distraction osteogenesis. J Craniofac Surg. 2013;24:e169–75.

    Article  PubMed  Google Scholar 

  34. Yan Z, Hang D, Guo C, Chen Z. Fate of mesenchymal stem cells transplanted to osteonecrosis of femoral head. J Orthop Res. 2009;27:442–6.

    Article  PubMed  Google Scholar 

  35. Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J, Yin S, Liu W, Cao Y. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials. 2007;28:5477–86.

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Fan H, Zhang ZY, Lou AJ, Pei GX, Jiang S, Mu TW, Qin JJ, Chen SY, Jin D. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials. 2010;31:9452–61.

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Dai K, Tang T, Zhang X, Yan M, Lou J. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2. Biochem Biophys Res Commun. 2007;356:836–42.

    Article  CAS  PubMed  Google Scholar 

  38. Ren ML, Peng W, Yang ZL, Sun XJ, Zhang SC, Wang ZG, Zhang B. Allogeneic adipose-derived stem cells with low immunogenicity constructing tissue-engineered bone for repairing bone defects in pigs. Cell Transplant. 2012;21:2711–21.

    Article  PubMed  Google Scholar 

  39. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dragoo JL, Choi JY, Lieberman JR, Huang J, Zuk PA, Zhang J, Hedrick MH, Benhaim P. Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop. 2003;21:622–9. [PubMed]

    CAS  Google Scholar 

  41. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  42. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344:385–6.

    Article  CAS  PubMed  Google Scholar 

  43. Cancedda R, Mastrogiacomo M, Bianchi G, Derubeis A, Muraglia A, et al. Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp. 2003;249:133–43.

    Article  PubMed  Google Scholar 

  44. Schimming R, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg. 2004;62(6):724–9.

    Article  PubMed  Google Scholar 

  45. Shayesteh YS, Khojasteh A, Soleimani M, Alikhasi M, Khoshzaban A, Ahmadbeigi N. Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(2):203–9.

    Article  PubMed  Google Scholar 

  46. Grayson WL, Fröhlich M, Yeager K, et al. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci U S A. 2010;107:3299–304.

    Article  CAS  PubMed  Google Scholar 

  47. Chimutengwende-Gordon M, Khan WS. Advances in the use of stem cells and tissue engineering applications in bone repair. Curr Stem Cell Res Ther. 2012;7(2):123–6.

    Article  Google Scholar 

  48. Pastides PS, Welck M, Khan WS. Use of bone marrow derived stem cells in trauma and orthopaedics: a review of current concepts. World J Orthop. 2015;6(6):462–8.

    PubMed  PubMed Central  Google Scholar 

  49. Bajada S, Harrison PE, Ashton BA, Cassar-Pullicino VN, Ashammakhi N, Richardson JB. Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br. 2007;89:1382–6.

    Article  CAS  PubMed  Google Scholar 

  50. Giannotti S, Trombi L, Bottai V, Ghilardi M, D’Alessandro D, Danti S, Dell’Osso G, Guido G, Petrini M. Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment. PLoS One. 2013;8:e73893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fernandez-Bances I, Perez-Basterrechea M, Perez-Lopez S, Nuñez Batalla D, Fernandez Rodriguez MA, Alvarez-Viejo M, Ferrero-Gutierrez A, Menendez-Menendez Y, Garcia-Gala JM, Escudero D, et al. Repair of long-bone pseudoarthrosis with autologous bone marrow mononuclear cells combined with allogenic bone graft. Cytotherapy. 2013;15:571–7.

    Article  CAS  PubMed  Google Scholar 

  52. Grgurevic L, Macek B, Mercep M, Jelic M, Smoljanovic T, Erjavec I, Dumic-Cule I, Prgomet S, Durdevic D, Vnuk D, et al. Bone morphogenetic protein (BMP)1-3 enhances bone repair. Biochem Biophys Res Commun. 2011;408:25–31.

    Article  CAS  PubMed  Google Scholar 

  53. Liebergall M, Schroeder J, Mosheiff R, Gazit Z, Yoram Z, Rasooly L, et al. Stem cell-based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Mol Ther. 2013;21:1631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Connolly JF, Shindell R. Percutaneous marrow injection for an ununited tibia. Nebr Med J. 1986;71(4):105–7.

    CAS  PubMed  Google Scholar 

  55. Connolly JF, Guse R, Tiedeman J, Dehne R. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res. 1991;266:259–70.

    Google Scholar 

  56. Connolly JF. Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis. Clin Orthop Relat Res. 1998;355:S257–66.

    Article  Google Scholar 

  57. Healey JH, Zimmerman PA, McDonnell JM, Lane JM. Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin Orthop Relat Res. 1990;256:280–5.

    Google Scholar 

  58. Garg NK, Gaur S, Sharma S. Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthop Scand. 1993;64(6):671–2.

    Article  CAS  PubMed  Google Scholar 

  59. Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005;87:1430–7.

    PubMed  Google Scholar 

  60. Goel A, Sangwan SS, Siwach RC, Ali AM. Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury. 2005;36(1):203–6.

    Article  PubMed  Google Scholar 

  61. Galois L, Bensoussan D, Diligent J, Pinzano A, Henrionnet C, Choufani E, Stoltz JF, Mainard D. Autologous bone marrow graft and treatment of delayed and non-unions of long bones: technical aspects. Biomed Mater Eng. 2009;19:277–81.

    PubMed  Google Scholar 

  62. Ismail HD, Phedy P, Kholinne E, Djaja YP, Kusnadi Y, Merlina M, Yulisa ND. Mesenchymal stem cell implantation in atrophic nonunion of the long bones. A translational study. Bone Joint Res. 2016;5:287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Calori GM, Giannoudis PV. Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury. 2011;42:1191–3.

    Article  PubMed  Google Scholar 

  64. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.

    Article  CAS  PubMed  Google Scholar 

  65. Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: implications in tissue regeneration. World J Stem Cells. 2014;6(3):312–21.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Peinado JR, Pardo M, de la Rosa O, Malagón MM. Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity. Proteomics. 2012;12(4–5):607–20.

    Article  CAS  PubMed  Google Scholar 

  67. Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208(1):64–76.

    Article  CAS  PubMed  Google Scholar 

  68. Crandall DL, Hausman GJ, Kral JG. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation. 1997;4(2):211–32.

    Article  CAS  PubMed  Google Scholar 

  69. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54(3):132–41.

    Article  CAS  PubMed  Google Scholar 

  70. Crisan M, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

    Article  CAS  PubMed  Google Scholar 

  71. Chen C-W, et al. Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev. 2009;20:429–34.

    Article  CAS  PubMed  Google Scholar 

  72. Caplan AI. All MSCs are pericytes? Cell Stem Cell. 2008;3:229–30.

    Article  CAS  PubMed  Google Scholar 

  73. Murray IR, Corselli M, Petrigliano FA, Soo C, Peault B. Recent insights into the identity of mesenchymal stem cells: implications for orthopaedic applications. Bone Joint J. 2014;96-B:291–8.

    Article  CAS  PubMed  Google Scholar 

  74. Reed AAC, Joyner CJ, Isefuku S, Brownlow HC, Simpson AHRW. Vascularity in a new model of atrophic nonunion. J Bone Joint Surg Br 85, 2003;604–610.

    Google Scholar 

  75. Tawonsawatruk T, Kelly M, Simpson H. Evaluation of native mesenchymal stem cells from bone marrow and local tissue in an atrophic nonunion model. Tissue Eng Part C Methods 20, 2014;524–532.

    Google Scholar 

  76. James AW et al. An abundant perivascular source of stem cells for bone tissue engineering. Stem Cells Translational Medicine 1, 2012;673–684.

    Google Scholar 

  77. Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells. 2014;6(2):144–52.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32:370–3.

    Article  PubMed  Google Scholar 

  79. Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38:201–9.

    Article  PubMed  Google Scholar 

  80. Sándor GK, Tuovinen VJ, Wolff J, Patrikoski M, Jokinen J, Nieminen E, Mannerström B, Lappalainen OP, Seppänen R, Miettinen S. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 2013;71:938–50.

    Article  PubMed  Google Scholar 

  81. Kulakov AA, Goldshtein DV, Grigoryan AS, Rzhaninova AA, Alekseeva IS, Arutyunyan IV, Volkov AV. Clinical study of the efficiency of combined cell transplant on the basis of multipotent mesenchymal stromal adipose tissue cells in patients with pronounced deficit of the maxillary and mandibulary bone tissue. Bull Exp Biol Med. 2008;146:522–5.

    Article  CAS  PubMed  Google Scholar 

  82. Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, Shi S. Craniofacial tissue engineering by stem cells. J Dent Res. 2006;85:966–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sándor GK. Tissue engineering of bone: clinical observations with adipose-derived stem cells, resorbable scaffolds, and growth factors. Ann Maxillofac Surg. 2012;2:8–11.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tawonsawatruk T, Murray IR, Soo C, Péault B, Simpson AHRW. Adipose derived pericytes rescue fractures from a failure of healing—non-union. Sci Rep. 2016;6:22779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Muller AM, et al. Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. Eur Cell Mater. 2010;19:127–35.

    Article  CAS  PubMed  Google Scholar 

  86. Evans CH, Palmer GD, Pascher A, Porter R, Kwong FN, Gouze E, Gouze JN, Liu F, Steinert A, Betz O, Betz V, Vrahas M, Ghivizzani SC. Facilitated endogenous repair: making tissue engineering simple, practical, and economical. Tissue Eng. 2007;13(8):1987–93.

    Article  CAS  PubMed  Google Scholar 

  87. Aslan H, Zilberman Y, Kandel L, Liebergall M, Oskouian RJ, Gazit D, Gazit Z. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells. 2006;24:1728–37.

    Article  PubMed  Google Scholar 

  88. Helder MN, Knippenberg M, Klein-Nulend J, Wuisman PI. Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng. 2007;13:1799–808.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Valerio Sciarretta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Sciarretta, F.V. (2017). Clinical Orthobiologic Approach to Failure or Delay in Bone Healing. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics