Skip to main content

Bone Anatomy and the Biologic Healing Process of a Fracture

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Bones are dynamic tissues with a great organization in structure not only a static support also with a great cellular and mineral capacity. The biology of bone fracture healing is a very complex process, through the understanding of the healing phases, is critical. Fracture healing can be divided into two main categories: primary bone healing and secondary bone healing although both healing responses can interact. Primary bone healing is similar to the bone remodeling which occurs under low interfragmentary movement or rigid fixation and under compression. Secondary bone healing is associated with motion on the fracture site, involves an inflammatory response and hematoma formation, repair phase (soft callus and hard callus), and remodeling. After a fracture blood vessels disruption, it leads to hematoma formation and the hematoma is intruded with immune cells; an inflammatory response elicits with pro-inflammatory cytokines IL-1, IL-6, TNF-α, and IFN-ϒ. The control of inflammatory response is critical for further process. After resolution of the inflammatory response, mesenchymal stem cells accumulate to the fracture side and differentiate into chondrocytes and osteoblasts. Further, with the controlled activity of macrophages, T- and B-lymphocytes, cytokines, and growth factors, soft callus is produced with endochondral formation followed by hard callus. Fracture healing is completed by the remodeling phase characterized by the balance between osteoblast and osteoclast functions under both systemic and local control pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMPs:

Bone morphogenetic proteins

CXCL:

Chemokine motif ligand

DMP1:

Dentin matrix protein

ECM:

Extracellular matrix

FGF-1:

Fibroblast growth factor-1

GMCSF:

Granulocyte-macrophage colony-stimulating factor

IFN-ϒ:

Interferon-ϒ

IGF-1:

Insulin-like growth factor

IL1-ra:

IL-1 receptor antagonist

M-CSF:

Macrophage colony-stimulating factor

MCP-1:

Monocyte chemotactic protein-1

MEPE:

Matrix extracellular phospho-glycoprotein

MIP-1 α:

Macrophage inflammatory protein-1 α

MMPs:

Matrix metalloproteinases

MSCs:

Mesenchymal stem cells

NK cells:

Natural killer cells

OPG:

Osteoprotegerin

PBMCs:

Peripheral blood mononuclear cells

PDGF:

Platelet-derived growth factor

PMNs:

Polymorphonuclear neutrophils

PTH:

Parathyroid hormone

RANKL:

Receptor activator of nuclear factor kappa-B ligand

SDF-1:

Stromal derived factor-1

TGF-β:

Transforming growth factor beta

TLRs:

Toll-like receptors

TRAP:

Tartrate resistant acid phosphatase

VEGF:

Vascular endothelial growth factor

References

  1. Eriksen EF, Axelord D, Melsen F. Bone histomorphometry. New York: Raven Press; 1994.

    Google Scholar 

  2. Hennig C, Thomas CD, Clement JG, et al. Does 3D orientation account for variation in osteon morphology assessed by 2D histology? J Anat. 2015;227:497–505.

    Article  PubMed  Google Scholar 

  3. Augustin G, Antabak A, Davila S. The periosteum. Part 1: anatomy, histology and molecular biology. Injury. 2007;38:1115–30.

    Article  PubMed  Google Scholar 

  4. Roberts SJ, Van Gastel N, Carmeliet G, et al. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone. 2015;70:10–8.

    Article  PubMed  Google Scholar 

  5. Jones DB, Nolte H, Scholubbers JG, et al. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials. 1991;12:101–10.

    Article  CAS  PubMed  Google Scholar 

  6. Midura RJ, Su X, Morcuende JA, et al. Parathyroid hormone rapidly stimulates hyaluronan synthesis by periosteal osteoblasts in the tibial diaphysis of the growing rat. J Biol Chem. 2003;278:51462–8.

    Article  CAS  PubMed  Google Scholar 

  7. Franz-Odendaal TA, Hall BK, Witten PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn. 2006;235:176–90.

    Article  CAS  PubMed  Google Scholar 

  8. Rubin CT, Lanyon LE. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res. 1987;5:300–10.

    Article  CAS  PubMed  Google Scholar 

  9. Wysolmerski JJ. Osteocytic osteolysis: time for a second look? BoneKEy Rep. 2012;1:229.

    Google Scholar 

  10. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.

    Article  CAS  PubMed  Google Scholar 

  11. Dee RME, Hurst E. Principles of orthopaedic practice. New York: McGraw-Hill; 1988.

    Google Scholar 

  12. Blair HC, Teitelbaum SL, Ghiselli R, et al. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science (New York, NY). 1989;245:855–7.

    Article  CAS  Google Scholar 

  13. Florencio-Silva R, Sasso GR, Sasso-Cerri E, et al. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shea JE, Miller SC. Skeletal function and structure: implications for tissue-targeted therapeutics. Adv Drug Deliv Rev. 2005;57:945–57.

    Article  CAS  PubMed  Google Scholar 

  15. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3:S131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol. 2015;65:20–31.

    Article  CAS  PubMed  Google Scholar 

  17. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell … and more. Endocr Rev. 2013;34:658–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg. 2002;84:1093–110.

    Article  Google Scholar 

  19. Thompson Z, Miclau T, Hu D, Helms JA. A model for intramembranous ossification during fracture healing. J Orthop Res. 2002;20:1091–8.

    Google Scholar 

  20. Shapiro F. Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am. 1988;70:1067–81.

    Article  CAS  PubMed  Google Scholar 

  21. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42:551–5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Delacure MD. Physiology of bone healing and bone grafts. Otolaryngol Clin North Am. 1994;27:859–74.

    CAS  PubMed  Google Scholar 

  23. Bastian O, Pillay J, Alblas J, et al. Systemic inflammation and fracture healing. J Leukoc Biol. 2011;89:669–73.

    Article  CAS  PubMed  Google Scholar 

  24. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6.

    Article  Google Scholar 

  25. El-Jawhari JJ, Jones E, Giannoudis PV. The roles of immune cells in bone healing; what we know, do not know and future perspectives. Injury. 2016;47:2399–406.

    Article  PubMed  Google Scholar 

  26. Cameron JA, Milner DJ, Lee JS, et al. Employing the biology of successful fracture repair to heal critical size bone defects. Curr Top Microbiol Immunol. 2013;367:113–32.

    PubMed  Google Scholar 

  27. Segal AW. How superoxide production by neutrophil leukocytes kills microbes. Novartis Foundation symposium, Vol. 279; 2006. p. 92–8; discussion 98–100, 216–9.

    Google Scholar 

  28. Soehnlein O, Lindbom L, Weber C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood. 2009;114:4613–23.

    Article  CAS  PubMed  Google Scholar 

  29. Timlin M, Toomey D, Condron C, et al. Fracture hematoma is a potent proinflammatory mediator of neutrophil function. J Trauma. 2005;58:1223–9.

    Article  PubMed  Google Scholar 

  30. Bozlar M, Aslan B, Kalaci A, et al. Effects of human granulocyte-colony stimulating factor on fracture healing in rats. Saudi Med J. 2005;26:1250–4.

    PubMed  Google Scholar 

  31. Chan JK, Glass GE, Ersek A, et al. Low-dose TNF augments fracture healing in normal and osteoporotic bone by up-regulating the innate immune response. EMBO Mol Med. 2015;7:547–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chung R, Cool JC, Scherer MA, et al. Roles of neutrophil-mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. J Leukoc Biol. 2006;80:1272–80.

    Article  CAS  PubMed  Google Scholar 

  33. Grogaard B, Gerdin B, Reikeras O. The polymorphonuclear leukocyte: has it a role in fracture healing? Arch Orthop Trauma Surg. 1990;109:268–71.

    Article  CAS  PubMed  Google Scholar 

  34. Kovtun A, Bergdolt S, Wiegner R, et al. The crucial role of neutrophil granulocytes in bone fracture healing. Eur Cell Mater. 2016;32:152–62.

    Article  CAS  PubMed  Google Scholar 

  35. Beuscher HU, Rausch UP, Otterness IG, et al. Transition from interleukin 1 beta (IL-1 beta) to IL-1 alpha production during maturation of inflammatory macrophages in vivo. J Exp Med. 1992;175:1793–7.

    Google Scholar 

  36. Sfeir C, Ho L, Doll BA, Azari K, Hollinger JO. Fracture repair. In: Lieberman JR, Friedlaender GE, editors. Bone regeneration and repair. Totowa: Humana Press; 2005. p. 21–44.

    Chapter  Google Scholar 

  37. Kon T, Cho TJ, Aizawa T, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res. 2001;16:1004–14.

    Article  CAS  PubMed  Google Scholar 

  38. Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev. 2008;14:179–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kitaura H, Zhou P, Kim H-J, et al. M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Investig. 2005;115:3418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.

    Article  CAS  PubMed  Google Scholar 

  41. Lee SK, Lorenzo J. Cytokines regulating osteoclast formation and function. Curr Opin Rheumatol. 2006;18:411–8.

    Article  CAS  PubMed  Google Scholar 

  42. Gerstenfeld LC, Cullinane DM, Barnes GL, et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88:873–84.

    Article  CAS  PubMed  Google Scholar 

  43. Croitoru-Lamoury J, Lamoury FMJ, Caristo M, et al. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS One. 2011;6:e14698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dighe AS, Yang S, Madhu V, et al. Interferon gamma and T cells inhibit osteogenesis induced by allogeneic mesenchymal stromal cells. J Orthop Res. 2013;31:227–34.

    Article  CAS  PubMed  Google Scholar 

  45. Bocker W, Docheva D, Prall WC, et al. IKK-2 is required for TNF-alpha-induced invasion and proliferation of human mesenchymal stem cells. J Mol Med. 2008;86:1183–92.

    Article  PubMed  Google Scholar 

  46. Guiducci S, Manetti M, Romano E, et al. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro. Ann Rheum Dis. 2011;70:2011–21.

    Google Scholar 

  47. Ito H. Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod Rheumatol. 2011;21:113–21.

    Article  CAS  PubMed  Google Scholar 

  48. Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 2009;60:813–23.

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, Duan B, Cheng Z, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell. 2011;2:845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yellowley C. CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. BoneKEy Rep. 2013;2:300.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36:1392–404.

    Article  PubMed  Google Scholar 

  52. Dudakov JA, Hanash AM, Jenq RR, et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science (New York, NY). 2012;336:91–5.

    Article  CAS  Google Scholar 

  53. El-Zayadi AA, Jones E, Churchman SM, Baboolal TG, Cuthbert RJ, El-Jawhari JJ, Badawy AM, Alase AA, El-Sherbiny YM, Mcgonagle D. IL-22 drives the proliferation, migration and osteogenic differentiation of human bone marrow mesenchymal stem cells (MSCs): a novel cytokine that may contribute to aberrant new bone formation in human SpA. Arthritis Rheumatol. 2015;67(Suppl 10):263–8.

    Google Scholar 

  54. Han X, Yang Q, Lin L, et al. Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death Differ. 2014;21:1758–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krampera M. Mesenchymal stromal cell ‘licensing’: a multistep process. Leukemia. 2011;25:1408–14.

    Article  CAS  PubMed  Google Scholar 

  56. Nam D, Mau E, Wang Y, et al. T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PLoS One. 2012;7:e40044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sawa S, Lochner M, Satoh-Takayama N, et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011;12:320–6.

    Article  CAS  PubMed  Google Scholar 

  58. Scandella E, Bolinger B, Lattmann E, et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol. 2008;9:667–75.

    Article  CAS  PubMed  Google Scholar 

  59. Hoff P, Gaber T, Strehl C, et al. Immunological characterization of the early human fracture hematoma. Immunol Res. 2016;64:1195–206.

    Article  CAS  PubMed  Google Scholar 

  60. Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res. 2002;17:513–20.

    Article  CAS  PubMed  Google Scholar 

  61. Stocum DL. Regenerative biology and medicine. Amsterdam: Elsevier; 2006.

    Google Scholar 

  62. Colnot C, Thompson Z, Miclau T, et al. Altered fracture repair in the absence of MMP9. Development. 2003;130:4123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang WC, Sala-Newby GB, Susana A, et al. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-kappaB. PLoS One. 2012;7:e42507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kosaki N, Takaishi H, Kamekura S, et al. Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice. Biochem Biophys Res Commun. 2007;354:846–51.

    Article  CAS  PubMed  Google Scholar 

  65. Mcdonald MM, Morse A, Mikulec K, et al. Matrix metalloproteinase-driven endochondral fracture union proceeds independently of osteoclast activity. J Bone Miner Res. 2013;28:1550–60.

    Article  CAS  PubMed  Google Scholar 

  66. Gerstenfeld LC, Cho TJ, Kon T, et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res. 2003;18:1584–92.

    Article  CAS  PubMed  Google Scholar 

  67. Kondo M, Yamaoka K, Sonomoto K, et al. IL-17 inhibits chondrogenic differentiation of human mesenchymal stem cells. PLoS One. 2013;8:e79463.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakase T, Yoshikawa H. Potential roles of bone morphogenetic proteins (BMPs) in skeletal repair and regeneration. J Bone Miner Metab. 2006;24:425–33.

    Article  PubMed  Google Scholar 

  70. Hanada R, Hanada T, Penninger JM. Physiology and pathophysiology of the RANKL/RANK system. Biol Chem. 2010;391:1365–70.

    Article  CAS  PubMed  Google Scholar 

  71. Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology. 2000;141:3478–84.

    Article  CAS  PubMed  Google Scholar 

  72. Huang H, Kim HJ, Chang EJ, et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ. 2009;16:1332–43.

    Article  CAS  PubMed  Google Scholar 

  73. Gilbert L, He X, Farmer P, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 2000;141:3956–64.

    Article  CAS  PubMed  Google Scholar 

  74. Lam J, Takeshita S, Barker JE, et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106:1481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998;355:S7–21.

    Article  Google Scholar 

  76. Ishida K, Matsumoto T, Sasaki K, et al. Bone regeneration properties of granulocyte colony-stimulating factor via neovascularization and osteogenesis. Tissue Eng Part A. 2010;16:3271–84.

    Article  CAS  PubMed  Google Scholar 

  77. Yang X, Ricciardi BF, Hernandez-Soria A, et al. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone. 2007;41:928–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408:600–5.

    Article  CAS  PubMed  Google Scholar 

  79. Croes M, Oner FC, Van Neerven D, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone. 2016;84:262–70.

    Article  CAS  PubMed  Google Scholar 

  80. Ono T, Okamoto K, Nakashima T, et al. IL-17-producing gammadelta T cells enhance bone regeneration. Nat Commun. 2016;7:10928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Ercin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Ercin, E., Hurmeydan, O.M., Karahan, M. (2017). Bone Anatomy and the Biologic Healing Process of a Fracture. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics