Skip to main content

3D-Printed Artificial Meniscus

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

The majority of meniscal injuries require removal of the torn meniscus [1]. Although meniscectomy decreases the pain temporarily, even partial meniscectomy leads to osteoarthritis (OA) due to its crucial role in protecting articular cartilage [2, 3]. Meniscus repair could be a better option; however, owing to its poor healing potential, the indications for meniscus repair are limited, and failure rates remain high [4, 5]. Although there are now increasing data to support the use of allograft meniscus replacement and artificial meniscal substitutes in advanced cases of meniscus loss, even with the appropriate indications, these options are impaired by a lack of universal efficacy and limited availability. For this reason, tissue-engineering approaches and biological augmentation of meniscus repair and replacement are important considerations. This article summarizes current data on meniscus scaffolds for replacement surgery. Furthermore, we place particular focus on three-dimensional (3D)-printed artificial meniscus scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salata MJ, Gibbs AE, Sekiya JK. A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med. 2010;38(9):1907–16.

    Article  PubMed  Google Scholar 

  2. Mills PM, Wang Y, Cicuttini FM, Stoffel K, Stachowiak GW, Podsiadlo P, et al. Tibio-femoral cartilage defects 3-5 years following arthroscopic partial medial meniscectomy. Osteoarthr Cartil. 2008;16(12):1526–31.

    Article  CAS  PubMed  Google Scholar 

  3. Englund M, Roemer FW, Hayashi D, Crema MD, Guermazi A. Meniscus pathology, osteoarthritis and the treatment controversy. Nat Rev Rheumatol. 2012;8(7):412–9.

    Article  CAS  PubMed  Google Scholar 

  4. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am. 1983;65(4):538–47.

    Article  CAS  PubMed  Google Scholar 

  5. Kawamura S, Lotito K, Rodeo SA. Biomechanics and healing response of the meniscus. Oper Tech Sports Med. 2003;11(2):68–76.

    Article  Google Scholar 

  6. Nakagawa Y, Sekiya I, Kondo S, Tabuchi T, Ichinose S, Koga H, et al. Relationship between MRI T1 rho value and histological findings of intact and radially incised menisci in microminipigs. J Magn Reson Imaging. 2016;43(2):434–45.

    Article  PubMed  Google Scholar 

  7. Verdonk PC, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil. 2005;13(7):548–60.

    Article  CAS  PubMed  Google Scholar 

  8. Peters G, Wirth CJ. The current state of meniscal allograft transplantation and replacement. Knee. 2003;10(1):19–31.

    Article  PubMed  Google Scholar 

  9. van der Wal RJ, Thomassen BJ, van Arkel ER. Long-term clinical outcome of open meniscal allograft transplantation. Am J Sports Med. 2009;37(11):2134–9.

    Article  PubMed  Google Scholar 

  10. Wang H, Chen T, Gee AO, Hutchinson ID, Stoner K, Warren RF, et al. Altered regional loading patterns on articular cartilage following meniscectomy are not fully restored by autograft meniscal transplantation. Osteoarthr Cartil. 2015;23(3):462–8.

    Article  CAS  PubMed  Google Scholar 

  11. Samitier G, Alentorn-Geli E, Taylor DC, Rill B, Lock T, Moutzouros V, et al. Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):310–22.

    Article  PubMed  Google Scholar 

  12. Johnson LL, Feagin JA. Autogenous tendon graft substitution for absent knee joint meniscus: a pilot study. Arthroscopy. 2000;16(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  13. Cook JL, Fox DB, Malaviya P, Tomlinson JL, Kuroki K, Cook CR, et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med. 2006;34(1):32–42.

    Article  PubMed  Google Scholar 

  14. Balint E, Gatt CJ, Dunn MG. Design and mechanical evaluation of a novel fiber-reinforced scaffold for meniscus replacement. J Biomed Mater Res A. 2012;100(1):195–202.

    Article  PubMed  Google Scholar 

  15. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16; discussion 16.

    Google Scholar 

  16. Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater. 2010;6(12):4716–24.

    Article  CAS  PubMed  Google Scholar 

  17. Nakagawa Y, Muneta T, Otabe K, Ozeki N, Mizuno M, Udo M, et al. Cartilage derived from bone marrow mesenchymal stem cells expresses Lubricin in vitro and in vivo. PLoS One. 2016;11(2):e0148777.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52(8):2521–9.

    Article  PubMed  Google Scholar 

  19. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  20. Koga H, Shimaya M, Muneta T, Nimura A, Morito T, Hayashi M, et al. Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther. 2008;10(4):R84.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kondo S, Muneta T, Nakagawa Y, Koga H, Watanabe T, Tsuji K, et al. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. J Orthop Res. 2016. doi: 10.1002/jor.23211. PMID: 26916126.

  22. Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 2008;333(2):207–15.

    Article  PubMed  Google Scholar 

  23. Nakagawa Y, Muneta T, Kondo S, Mizuno M, Takakuda K, Ichinose S, et al. Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthr Cartil. 2015;23(6):1007–17.

    Article  CAS  PubMed  Google Scholar 

  24. Ozeki N, Muneta T, Matsuta S, Koga H, Nakagawa Y, Mizuno M, et al. Synovial mesenchymal stem cells promote meniscus regeneration augmented by an autologous Achilles tendon graft in a rat partial meniscus defect model. Stem Cells. 2015;33(6):1927–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tumia NS, Johnstone AJ. Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am J Sports Med. 2004;32(4):915–20.

    Article  PubMed  Google Scholar 

  27. Spindler KP, Mayes CE, Miller RR, Imro AK, Davidson JM. Regional mitogenic response of the meniscus to platelet-derived growth factor (PDGF-AB). J Orthop Res. 1995;13(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  28. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37(11):2259–72.

    Article  PubMed  Google Scholar 

  29. Gessmann J, Köller M, Godry H, Schildhauer TA, Seybold D. Regenerate augmentation with bone marrow concentrate after traumatic bone loss. Orthop Rev (Pavia). 2012;4(1):e14.

    Article  PubMed Central  Google Scholar 

  30. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sports Med. 2016;4(1):2325967115625481.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhong W, Sumita Y, Ohba S, Kawasaki T, Nagai K, Ma G, et al. In vivo comparison of the bone regeneration capability of human bone marrow concentrates vs. platelet-rich plasma. PLoS One. 2012;7(7):e40833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hutchinson ID, Moran CJ, Potter HG, Warren RF, Rodeo SA. Restoration of the meniscus: form and function. Am J Sports Med. 2014;42(4):987–98.

    Article  PubMed  Google Scholar 

  33. Fabbriciani C, Lucania L, Milano G, Schiavone Panni A, Evangelisti M. Meniscal allografts: cryopreservation vs deep-frozen technique. An experimental study in goats. Knee Surg Sports Traumatol Arthrosc. 1997;5(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  34. Lee BS, Chung JW, Kim JM, Cho WJ, Kim KA, Bin SI. Morphologic changes in fresh-frozen meniscus allografts over 1 year: a prospective magnetic resonance imaging study on the width and thickness of transplants. Am J Sports Med. 2012;40(6):1384–91.

    Article  PubMed  Google Scholar 

  35. Reguzzoni M, Manelli A, Ronga M, Raspanti M, Grassi FA. Histology and ultrastructure of a tissue-engineered collagen meniscus before and after implantation. J Biomed Mater Res B Appl Biomater. 2005;74(2):808–16.

    Article  PubMed  Google Scholar 

  36. Steadman JR, Rodkey WG. Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy. 2005;21(5):515–25.

    Article  PubMed  Google Scholar 

  37. Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G, et al. Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med. 2011;39(5):977–85.

    Article  PubMed  Google Scholar 

  38. Monllau JC, Gelber PE, Abat F, Pelfort X, Abad R, Hinarejos P, et al. Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy. 2011;27(7):933–43.

    Article  PubMed  Google Scholar 

  39. Wang YX, Griffith JF, Ahuja AT. Non-invasive MRI assessment of the articular cartilage in clinical studies and experimental settings. World J Radiol. 2010;2(1):44–54.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W, et al. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med. 2012;40(4):844–53.

    Article  PubMed  Google Scholar 

  41. Spencer SJ, Saithna A, Carmont MR, Dhillon MS, Thompson P, Spalding T. Meniscal scaffolds: early experience and review of the literature. Knee. 2012;19(6):760–5.

    Article  CAS  PubMed  Google Scholar 

  42. Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, et al. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):255–63.

    Article  PubMed  Google Scholar 

  43. Grogan SP, Chung PH, Soman P, Chen P, Lotz MK, Chen S, et al. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater. 2013;9(7):7218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vrancken AC, Madej W, Hannink G, Verdonschot N, van Tienen TG, Buma P. Short term evaluation of an anatomically shaped polycarbonate urethane total meniscus replacement in a goat model. PLoS One. 2015;10(7):e0133138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baker BM, Shah RP, Silverstein AM, Esterhai JL, Burdick JA, Mauck RL. Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc Natl Acad Sci U S A. 2012;109(35):14176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fisher MB, Henning EA, Söegaard N, Esterhai JL, Mauck RL. Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater. 2013;9(1):4496–504.

    Article  CAS  PubMed  Google Scholar 

  47. Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med. 2014;6(266):266ra171.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Furumatsu T, Kanazawa T, Miyake Y, Kubota S, Takigawa M, Ozaki T. Mechanical stretch increases Smad3-dependent CCN2 expression in inner meniscus cells. J Orthop Res. 2012;30(11):1738–45.

    Article  CAS  PubMed  Google Scholar 

  49. Pangborn CA, Athanasiou KA. Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng. 2005;11(7–8):1141–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Chang H Lee PhD, Hanying Bai PhD, from Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Rodeo M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Nakagawa, Y., Fortier, L.A., Mao, J.J., Sekiya, I., Rodeo, S.A. (2017). 3D-Printed Artificial Meniscus. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics