Skip to main content

Building the Basis for Patient-Specific Meniscal Scaffolds

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

The current strategies for the total or partial meniscus replacement with allograft transplantation or scaffold implantation need to be improved to overcome the limitations in the clinics. In addition to the required biological and biomechanical performance of the implants, the size and the shape of the implant are critical for the success of the treatment. The commercial implants are re-sized by cutting at the time of surgery according to the patient’s need; however, not completely in a 3D manner. The meniscal implants should advance beyond the traditional biomaterial concept by being patient-specific not only in terms of size and shape but regarding the cells and biologics derived from the patient. Herein, we overview the recent reports related to manufacturing of patient-specific meniscal implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pereira H, Cengiz IF, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. The role of arthroscopy in the treatment of degenerative meniscus tear. In: Arthroscopy. Springer; 2016b. p. 107–17.

    Google Scholar 

  2. Pereira H, Cengiz IF, Silva-Correia J, Ripoll PL, Varatojo R, Oliveira JM, Reis RL, Espregueira-Mendes J. Meniscal repair: indications, techniques, and outcome. In: Arthroscopy. Springer; 2016c. p. 125–42.

    Google Scholar 

  3. Bastos R, Andrade R, Pereira H, Oliveira JM, Reis RL, Rodeo S, Espregueira-Mendes J. Meniscal scaffolds in the clinics: present and future trends. Asian J Arthrosc. 2016;1(2):47–52.

    Google Scholar 

  4. Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Advanced regenerative strategies for human knee meniscus. In: Regenerative strategies for the treatment of knee joint disabilities. Springer; 2017a. p. 271–85.

    Google Scholar 

  5. Costa JB, Oliveira JM, Reis RL. Biomaterials in meniscus tissue engineering. In: Regenerative strategies for the treatment of knee joint disabilities. Springer; 2017. p. 249–70.

    Google Scholar 

  6. Cengiz IF, Pereira H, Pêgo JM, Sousa N, Espregueira-Mendes J, Oliveira JM, Reis RL. Segmental and regional quantification of 3D cellular density of human meniscus from osteoarthritic knee. J Tissue Eng Regen Med. 2015. doi:10.1002/term.2082.

  7. Pereira H, Caridade S, Frias A, Silva-Correia J, Pereira D, Cengiz I, Mano J, Oliveira JM, Espregueira-Mendes J, Reis R. Biomechanical and cellular segmental characterization of human meniscus: building the basis for tissue engineering therapies. Osteoarthr Cartil. 2014;22(9):1271–81.

    Article  CAS  PubMed  Google Scholar 

  8. Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Basics of the meniscus. In: Regenerative strategies for the treatment of knee joint disabilities. Springer; 2017b. p. 237–47.

    Google Scholar 

  9. Pereira H, Cengiz IF, Silva-Correia J, Cucciarini M, Gelber PE, Espregueira-Mendes J, Oliveira JM, Reis RL. Histology-ultrastructure-biology. In: Surgery of the meniscus. Springer; 2016a. p. 23–33.

    Google Scholar 

  10. Cengiz I, Pitikakis M, Cesario L, Parascandolo P, Vosilla L, Viano G, Oliveira J, Reis R. Building the basis for patient-specific meniscal scaffolds: from human knee MRI to fabrication of 3D printed scaffolds. Bioprinting. 2016;1:1–10.

    Article  Google Scholar 

  11. Cengiz I, Oliveira J, Reis R. Tissue engineering and regenerative medicine strategies for the treatment of osteochondral lesions. In: Magnenat-Thalmann N, Ratib O, Choi HF, editors. 3D multiscale physiological human. London: Springer; 2014. p. 25–47.

    Chapter  Google Scholar 

  12. Irvine SA, Venkatraman SS. Bioprinting and differentiation of stem cells. Molecules. 2016;21(9):1188.

    Article  Google Scholar 

  13. Yan L-P, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012;8(1):289–301.

    Article  CAS  PubMed  Google Scholar 

  14. Yan L-P, Silva-Correia J, Correia C, Caridade SG, Fernandes EM, Sousa RA, Mano JF, Oliveira JM, Oliveira AL, Reis RL. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine. 2013;8(3):359–78.

    Article  CAS  PubMed  Google Scholar 

  15. Yan L-P, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, Mano JF, Oliveira AL, Oliveira JM, Reis RL. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater. 2015;12:227–41.

    Article  CAS  PubMed  Google Scholar 

  16. Bakarich SE, Gorkin III R, in het Panhuis M, Spinks GM. Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces. 2014;6(18):15998–6006.

    Article  CAS  PubMed  Google Scholar 

  17. Lee J-Y, Choi B, Wu B, Lee M. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication. 2013;5(4):045003.

    Article  PubMed  Google Scholar 

  18. Marchioli G, van Gurp L, van Krieken P, Stamatialis D, Engelse M, van Blitterswijk C, Karperien M, de Koning E, Alblas J, Moroni L. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication. 2015;7(2):025009.

    Article  CAS  PubMed  Google Scholar 

  19. Martinez-Avila H, Sundberg J, Prakash S, Seniger M, Gatenholm P. Bioprinting of 3D patient-specific auricular scaffolds. J Tissue Eng Regen Med. 2012;6:153.

    Google Scholar 

  20. Everts PA, Knape JT, Weibrich G, Schonberger J, Hoffmann J, Overdevest EP, Box HA, van Zundert A. Platelet-rich plasma and platelet gel: a review. J Extra Corpor Technol. 2006;38(2):174.

    PubMed  PubMed Central  Google Scholar 

  21. Laver L, Marom N, Dnyanesh L, Mei-Dan O, Espregueira-Mendes J, Gobbi A. PRP for degenerative cartilage disease. A systematic review of clinical studies. Cartilage. 2016. http://dx.doi.org/10.1177/1947603516670709

  22. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10(4):225–8.

    Article  CAS  PubMed  Google Scholar 

  23. Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62:489–96.

    Article  PubMed  Google Scholar 

  24. Espregueira-Mendes J, Andrade R, Leal A, Pereira H, Skaf A, Rodrigues-Gomes S, Oliveira JM, Reis RL, Pereira R. Global rotation has high sensitivity in ACL lesions within stress MRI. Knee Surg Sports Traumatol Arthrosc. 2016;1–11.

    Google Scholar 

  25. Cates JE, Lefohn AE, Whitaker RT. GIST: an interactive, GPU-based level set segmentation tool for 3D medical images. Med Image Anal. 2004;8(3):217–31.

    Article  PubMed  Google Scholar 

  26. Jose RR, Rodriguez MJ, Dixon TA, Omenetto F, Kaplan DL. Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater Sci Eng. 2016;2(10):1662–78.

    Article  CAS  Google Scholar 

  27. Ibanez L, Schroeder W, Ng L, Cates J. The ITK software guide: the insight segmentation and registration toolkit, vol. 5. New York: Kitware; 2003.

    Google Scholar 

  28. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. In: ACM Siggraph computer graphics. ACM; 1987. p. 163–9.

    Google Scholar 

  29. Pereira H, Correia JS, Yan L, Caridade SG, Frias AM, Oliveira AL, Mano JF, Oliveira JM, Mendes JE, Reis R. Silk-fibroin/methacrylated gellan gum hydrogel as an novel scaffold for application in meniscus cell-based tissue engineering. Arthrosc J Arthrosc Relat Surg. 2013a;29(10 Suppl):e53–5.

    Article  Google Scholar 

  30. Pereira H, Silva-Correia J, Yan L-P, Oliveira A, Oliveira J-M, Espregueira-Mendes J, Reis R. Combined application of silk-fibroin/methacrylated gellan gum hydrogel in tissue engineering approaches for partial and/or total meniscus replacement while enabling control of neovascularization. Rev Chir Orthop Traumatol. 2013b;99(8):e18–9.

    Google Scholar 

  31. Deponti D, Giancamillo AD, Scotti C, Peretti GM, Martin I. Animal models for meniscus repair and regeneration. J Tissue Eng Regen Med. 2015;9(5):512–27.

    Article  PubMed  Google Scholar 

  32. Moroni L, Lambers F, Wilson W, van Donkelaar C, de Wijn J, Huiskesb R, van Blitterswijk C. Finite element analysis of meniscal anatomical 3D scaffolds: implications for tissue engineering. Open Biomed Eng J. 2007;1:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I. F. Cengiz thanks the Portuguese Foundation for Science and Technology (FCT) for the Ph.D. scholarship (SFRH/BD/99555/2014). J. M. Oliveira also thanks the FCT for the funds provided under the program Investigador FCT 2012 (IF/00423/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Fatih Cengiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Cengiz, I.F., Pereira, H., Pitikakis, M., Espregueira-Mendes, J., Oliveira, J.M., Reis, R.L. (2017). Building the Basis for Patient-Specific Meniscal Scaffolds. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics