Skip to main content

Education and Understanding Orthobiologics: Then and Now

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Over the past 10 years, the field of Orthobiologics has grown rapidly and started to establish a foundation as a potentially safe and efficacious alternative for a variety of musculoskeletal injuries, including joint disorders such as osteoarthritis and chronic tendinopathy. With life expectancy on the rise, and an aging population of baby boomers, the demand for viable minimally invasive options is at an all-time high. The increased demand has led to scores of physicians attempting to integrate regenerative options into their practices. However, as the exponential growth of orthobiologics continues to skyrocket, coordinated research efforts haven’t been able to match the same trajectory, resulting in a paucity of high level of evidence studies. As the volume of physicians utilizing orthobiologics continues to rise, we have a duty as innovators in the field to strive for cohesiveness and standardization to provide the highest level of safety and therapeutic efficacy for patients. In order to satisfy this responsibility and progress the field of orthobiologics, it is important to establish a common definition and understanding of current orthobiologic options, as well as improve access to continuing education and facilitate research collaboration throughout the global medical community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sampson S, Vincent H, Aufiero D. Orthobiologics: A new frontier in orthopaedics. 2014 April:1–3.

    Google Scholar 

  2. Islam A. Ultrasound: a new tool for precisely locating posterior iliac crests to obtain adequate bone marrow trephine biopsy specimen. J Clin Pathol. 2013;66(8):718–20.

    Article  PubMed  Google Scholar 

  3. Miller LE, Block JE. US-approved intra-articular hyaluronic acid injections are safe and effective in patients with knee osteoarthritis: systematic review and meta-analysis of randomized, saline-controlled trials. Clin Med Insights Arthritis Musculoskelet Disord. 2013;6:57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bannuru RR, Vaysbrot EE, Sullivan MC, McAlindon TE. Relative efficacy of hyaluronic acid in comparison with NSAIDs for knee osteoarthritis: a systematic review and meta-analysis. Semin Arthritis Rheum. 2014;43(5):593–9.

    Article  CAS  PubMed  Google Scholar 

  5. Bannuru RR, Natov NS, Dasi UR, Schmid CH, McAlindon TE. Therapeutic trajectory following intra-articular hyaluronic acid injection in knee osteoarthritis–meta-analysis. Osteoarthritis Cartilage. 2011;19(6):611–9.

    Article  CAS  PubMed  Google Scholar 

  6. Colen S, van den Bekerom MP, Mulier M, Haverkamp D. Hyaluronic acid in the treatment of knee osteoarthritis: a systematic review and meta-analysis with emphasis on the efficacy of different products. BioDrugs. 2012;26(4):257–68.

    Article  CAS  PubMed  Google Scholar 

  7. Ong KL, Anderson AF, Niazi F, Fierlinger AL, Kurtz SM, Altman RD. Hyaluronic acid injections in medicare knee osteoarthritis patients are associated with longer time to knee arthroplasty. J Arthroplasty. 2016;31(8):1667–73.

    Article  PubMed  Google Scholar 

  8. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil. 2014;22(3):363–88.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrari M, Zia S, Valbonesi M, Henriquet F, Venere G, Spagnolo S, et al. A new technique for hemodilution, preparation of autologous platelet-rich plasma and intraoperative blood salvage in cardiac surgery. Int J Artif Organs. 1987;10(1):47–50.

    CAS  PubMed  Google Scholar 

  10. Sampson S, Gerhardt M, Mandelbaum B. Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Muscoskelet Med. 2008;1(3–4):165–74.

    Article  Google Scholar 

  11. Mishra AK, Skrepnik NV, Edwards SG, Jones GL, Sampson S, Vermillion DA, et al. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med. 2014;42(2):463–71.

    Article  PubMed  Google Scholar 

  12. Rha DW, Park GY, Kim YK, Kim MT, Lee SC. Comparison of the therapeutic effects of ultrasound-guided platelet-rich plasma injection and dry needling in rotator cuff disease: a randomized controlled trial. Clin Rehabil. 2013;27(2):113–22.

    Article  PubMed  Google Scholar 

  13. Patel S, Dhillon MS, Aggarwal S, Marwaha N, Jain A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med. 2013;41(2):356–64.

    Article  PubMed  Google Scholar 

  14. Lana JFSD, Weglein A, Sampson S, Vicente EF, Huber SC, Souza CV, Ambach MA, Vincent H, et al. Randomized controlled trial comparing hyaluronic acid, platelet-rich plasma and the combination of both in the treatment of mild and moderate osteoarthritis of the knee. J Stem Cells Regen Med. 2016;12(2):69–78.

    PubMed  PubMed Central  Google Scholar 

  15. Sampson S, Smith J, Vincent H, Aufiero D, Zall M, Botto-van-Bemden A. Intra-articular bone marrow concentrate injection protocol: short-term efficacy in osteoarthritis. Regen Med. 2016;11(6):511–20.

    Article  CAS  PubMed  Google Scholar 

  16. Maffuli N. Platelet rich plasma in musculoskeletal medicine. New York: Springer; 2016.

    Book  Google Scholar 

  17. Mautner K, Malanga GA, Smith J, Shiple B, Ibrahim V, Sampson S, Bowen JE. A call for a standard classification system for future biologic research: the rationale for New PRP Nomenclature. PMR. 2015;7(4):S53–9.

    Article  Google Scholar 

  18. Braun HJ, Kim HJ, Cr C, Dragoo JL. The effect of platelet-rich plasma formulations and blood products on human synoviocytes: implications for intra-articular injury and therapy. Am J Sports Med. 2014;42(5):1204–10.

    Article  PubMed  Google Scholar 

  19. Riboh JC, Saltzman BM, Yanke AB, Fortier L, Cole BJ. Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am J Sports Med. 2016;44(3):792–800.

    Article  PubMed  Google Scholar 

  20. Sampson S, Botto-van Bemden A, Aufiero D. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Phys Sport. 2013;41(3):7–18.

    Article  Google Scholar 

  21. Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, and O’Connor MI. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med. 2017;45(1):82–90.

    Google Scholar 

  22. Centeno C, Pitts J, Al-Sayegh H, Freeman M. Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. Biomed Res Int. 2014;2014:370621

    Google Scholar 

  23. Centeno CJ, Freeman MD. Percutaneous injection of autologous, culture-expanded mesenchymal stem cells into carpometacarpal hand joints: a case series with an untreated comparison group. Wien Med Wochenschr. 2014;164(5–6):83–7.

    Article  PubMed  Google Scholar 

  24. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45(11):54.

    Article  Google Scholar 

  25. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C. The human adipose tissue is a source of multipotent stem cells. Biochimie. 2005;87(1):125–8.

    Article  CAS  PubMed  Google Scholar 

  27. Park SH, Sim WY, Min BH, Yang SS, Khademhosseini A, Kaplan DL. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS One. 2012;7(9):e46689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hung BP, Hutton DL, Kozielski KL, Bishop CJ, Naved B, Green JJ, et al. Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells. 2015;33(9):2773–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manferdini C, Maumus M, Gabusi E, Piacentini A, Filardo G, Peyrafitte JA, et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 2013;65(5):1271–81.

    Article  CAS  PubMed  Google Scholar 

  30. Si YL, Zhao YL, Hao HJ, Fu XB, Han WD. MSCs: biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev. 2011;10(1):93–103.

    Article  CAS  PubMed  Google Scholar 

  31. Díaz-Prado S, Muiños-López E, Hermida-Gómez T, Cicione C, Rendal-Vázquez ME, Fuentes-Boquete I, et al. Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation. 2011;81(3):162–71.

    Article  PubMed  Google Scholar 

  32. Aufiero D, Sampson S, Onishi K, Bemden VAB. Treatment of medial and lateral elbow tendinosis with an injectable amniotic membrane allograft—A retrospective case series. J Pain Relief. 2016;5(3):242.

    Google Scholar 

  33. Zelen CM, Poka A, Andrews J. Prospective, randomized, blinded, comparative study of injectable micronized dehydrated amniotic/chorionic membrane allograft for plantar fasciitis—a feasibility study. Foot Ankle Int. 2013;34(10):1332–9.

    Article  PubMed  Google Scholar 

  34. He Q, Li Q, Chen B, Wang Z. Repair of flexor tendon defects of rabbit with tissue engineering method. Chinese J Traumatol. 2002;5(4):200–8.

    Google Scholar 

  35. Willett NJ, Thote T, Lin ASP, Moran S, Raji Y, Sridaran S, et al. Intra-articular injection of micronized dehydrated human amnion/chorion membrane attenuates osteoarthritis development. Arthritis Res Ther. 2014;16(1):R47.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunter Vincent D.O. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Sampson, S., Vincent, H., Ambach, M. (2017). Education and Understanding Orthobiologics: Then and Now. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics