Skip to main content

Basic Science of Tendons

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Tendons disorders can be disabling. Tendon pathology has become particularly relevant only in the last few years, principally for two reasons:

  • The diffusion of competitive sports at a high level

  • Different approach to tendon problems since there is a better knowledge on the physiopathology and molecular structure of tendons

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin M, Ralphs J. Functional and developmental anatomy of tendons and ligaments. In: Gordon SL, Blair SJ, Fine LJ, editors. Repetitive motion disorders of the upper extremity. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1995. p. 185–203.

    Google Scholar 

  2. Best TM, Garrett WE. Basic science of soft tissue: muscle and tendon. In: JC DL, Drez Jr D, editors. Orthopaedic sports medicine: principles and practice. Philadelphia: WB Saunders; 1994. p. 1.

    Google Scholar 

  3. Kannus P, Jozsa L, Jarvinnen M. Basic science of tendons. In: Garrett Jr WE, Speer KP, Kirkendall DT, editors. Principles and practice of orthopaedic sports medicine. Philadelphia: Lippincott Williams and Wilkins; 2000. p. 21–37.

    Google Scholar 

  4. O’Brien M. Structure and metabolism of tendons. Scand J Med Sci Sports. 1997;7:55–61.

    Article  PubMed  Google Scholar 

  5. Kvist M, Jozsa L, Jarvinen M, et al. Fine structural alterations in chronic Achilles paratenonitis in athletes. Pathol Res Pract. 1985;180:416–23.

    Article  CAS  PubMed  Google Scholar 

  6. Kannus P, Jozsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73:1507–25.

    Article  CAS  PubMed  Google Scholar 

  7. Vailas AC, Tipton CM, Laughlin HL, et al. Physical activity and hypophysectomy on the aerobic capacity of ligaments and tendons. J Appl Physiol. 1978;44:542–6.

    CAS  PubMed  Google Scholar 

  8. Williams JG. Achilles tendon lesions in sport. Sports Med. 1986;3:114–35.

    Article  CAS  PubMed  Google Scholar 

  9. Jozsa L, Kannus P, Balint JB, et al. Three-dimensional ultrastructure of human tendons. Acta Anat (Basel). 1991;142:306–12.

    Article  CAS  Google Scholar 

  10. Lawler J. The structural and functional properties of thrombospondin. Blood. 1986;67:1197–209.

    CAS  PubMed  Google Scholar 

  11. Miller RR, McDevitt CA. Thrombospondin in ligament, meniscus and intervertebral disc. Biochim Biophys Acta. 1991;1115:85–8.

    Article  CAS  PubMed  Google Scholar 

  12. Riley GP, Harrall RL, Cawston TE, et al. Tenascin-C and human tendon degeneration. Am J Pathol. 1996;149:933–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lephart SM, Pincivero DM, Giraldo JL, et al. Location and distribution of non-collagenous matrix proteins in musculoskeletal tissues of rat. Histochem J. 1998;30:799–810.

    Article  Google Scholar 

  14. Oberhauser AF, Marszalek PE, Erickson HP, et al. The molecular elasticity of the extracellular matrix protein tenascin. Nature. 1998;393:181–5.

    Article  CAS  PubMed  Google Scholar 

  15. Mehr D, Pardubsky PD, Martin JA, et al. Tenascin-C in tendon regions subjected to compression. J Orthop Res. 2000;18:537–45.

    Article  CAS  PubMed  Google Scholar 

  16. Jarvinen TA, Jozsa L, Kannus P, et al. Mechanical loading regulates tenascin-C expression in the osteotendinous junction. J Cell Sci. 1999;112:3157–66.

    CAS  PubMed  Google Scholar 

  17. Astrom M. On the nature and etiology of chronic achilles tendinopathy [thesis]. Lund, Sweden: University of Lund; 1997.

    Google Scholar 

  18. Movin T, Kristoffersen-Wiberg M, Shalabi A, et al. Intratendinous alterations as imaged by ultrasound and contrast medium-enhanced magnetic resonance in chronic achillodynia. Foot Ankle Int. 1998;19:311–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kvist M, Jozsa L, Kannus P, et al. Morphology and histochemistry of the myotendineal junction of the rat calf muscles. Histochemical, immunohistochemical and electron-microscopic study. Acta Anat (Basel). 1991;141:199–205.

    Article  CAS  Google Scholar 

  20. Tidball JG. Myotendinous junction injury in relation to junction structure and molecular composition. Exerc Sport Sci Rev. 1991;19:419–45.

    Article  CAS  PubMed  Google Scholar 

  21. Jarvinen M, Kannus P, Kvist M, et al. Macromolecular composition of the myotendinous junction. Exp Mol Pathol. 1991;55:230–7.

    Article  CAS  PubMed  Google Scholar 

  22. Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat. 1998;193:481–94.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Benjamin M, Qin S, Ralphs JR. Fibrocartilage associated with human tendons and their pulleys. J Anat. 1995;187:625–33.

    PubMed  PubMed Central  Google Scholar 

  24. Evans EJ, Benjamin M, Pemberton DJ. Fibrocartilage in the attachment zones of the quadriceps tendon and patellar ligament of man. J Anat. 1990;171:155–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Elliott DH. Structure and function of mammalian tendon. Biol Rev Camb Philos Soc. 1965;40:392–421.

    Article  CAS  PubMed  Google Scholar 

  26. Jozsa LG, Kannus P. Human tendons: anatomy, physiology, and pathology. Champaign, IL: Human Kinetics; 1997.

    Google Scholar 

  27. Lundborg G, Myrhage R. The vascularization and structure of the human digital tendon sheath as related to flexor tendon function. An angiographic and histological study. Scand J Plast Reconstr Surg. 1977;11:195–203.

    Article  CAS  PubMed  Google Scholar 

  28. Doyle JR. Anatomy of the finger flexor tendon sheath and pulley system. J Hand Surg [Am]. 1988;13:473–84.

    Article  CAS  Google Scholar 

  29. Carr AJ, Norris SH. The blood supply of the calcaneal tendon. J Bone Joint Surg Br. 1989;71:100–1.

    CAS  PubMed  Google Scholar 

  30. Kvist M, Hurme T, Kannus P, et al. Vascular density at the myotendinous junction of the rat gastrocnemius muscle after immobilization and remobilization. Am J Sports Med. 1995;23:359–64.

    Article  CAS  PubMed  Google Scholar 

  31. Reynolds NL, Worrell TW. Chronic Achilles peritendinitis: etiology, pathophysiology, and treatment. J Orthop Sports Phys Ther. 1991;13:171–6.

    Article  CAS  PubMed  Google Scholar 

  32. Field PL. Tendon fibre arrangement and blood supply. Aust N Z J Surg. 1971;40:298–302.

    Article  CAS  PubMed  Google Scholar 

  33. Astrom M. Laser Doppler flowmetry in the assessment of tendon blood flow. Scand J Med Sci Sports. 2000;10:365–7.

    Article  CAS  PubMed  Google Scholar 

  34. Lephart SM, Pincivero DM, Giraldo JL, et al. The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med. 1997;25:130–7.

    Article  CAS  PubMed  Google Scholar 

  35. Fitzgerald MJT. Neuroanatomy: basic and clinical. 2nd ed. Philadelphia: Balliere Tindall; 1992.

    Google Scholar 

  36. Brodal A. Neurological anatomy in relation to clinical medicine. 3rd ed. New York: Oxford University Press; 1981.

    Google Scholar 

  37. Barr ML, Kiernan JA. The human nervous system: an anatomical viewpoint. 5th ed. Philadelphia: Lippincott; 1988.

    Google Scholar 

  38. Ackermann PW, Li J, Finn A, Ahmed M, et al. Autonomic innervation of tendons, ligaments and joint capsules. A morphologic and quantitative study in the rat. J Orthop Res. 2001;19:372–8.

    Article  CAS  PubMed  Google Scholar 

  39. Fyfe I, Stanish WD. The use of eccentric training and stretching in the treatment and prevention of tendon injuries. Clin Sports Med. 1992;11:601–24.

    CAS  PubMed  Google Scholar 

  40. Diamant J, Keller A, Baer E, et al. Collagen; ultrastructure and its relation to mechanical properties as a function of aging. Proc R Soc Land B Biol Sci. 1972;180:293–315.

    Article  CAS  Google Scholar 

  41. Hess GP, Cappiello WL, Poole RM, et al. Prevention and treatment of overuse tendon injuries. Sports Med. 1989;8:371–84.

    Article  CAS  PubMed  Google Scholar 

  42. Butler DL, Grood ES, Noyes FR, et al. Biomechanics of ligaments and tendons. Exerc Sport Sci Rev. 1978;6:125–81.

    CAS  PubMed  Google Scholar 

  43. Viidik A. Functional properties of collagenous tissues. Int Rev Connect Tissue Res. 1973;6:127–215.

    Article  CAS  PubMed  Google Scholar 

  44. Zernicke RF, Loitz BJ. Exercise-related adaptations in connective tissue. In: Komi PV, editor. The encyclopaedia of sports medicine. Strength and power in sport, vol. 3. Boston: Blackwell Scientific Publications; 2002. p. 93–113.

    Google Scholar 

  45. Mosler E, Folkhard W, Knorzer E, et al. Stress-induced molecular rearrangement in tendon collagen. J Mol Biol. 1985;182:589–96.

    Article  CAS  PubMed  Google Scholar 

  46. Curwin S, Stanish WD. Tendinitis, its etiology and treatment. Lexington, MA: Collamore Press; 1984.

    Google Scholar 

  47. O’Brien M. Functional anatomy and physiology of tendons. Clin Sports Med. 1992;11:505–20.

    PubMed  Google Scholar 

  48. Kastelic J, Baer E. Deformation in tendon collagen. Symp Soc Exp Biol. 1980;34:397–435.

    CAS  PubMed  Google Scholar 

  49. Sasaki N, Shukunami N, Matsushima N, et al. Time-resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. J Biomech. 1999;32:285–92.

    Article  CAS  PubMed  Google Scholar 

  50. Oakes BW, Singleton C, Haut RC. Correlation of collagen fibril morphology and tensile modulus in the repairing and normal rabbit patella tendon. Trans Orthop Res Soc. 1998;23:24.

    Google Scholar 

  51. Shadwick RE. Elastic energy storage in tendons: mechanical differences related to function and age. J Appl Physiol. 1990;68:1033–40.

    Article  CAS  PubMed  Google Scholar 

  52. Zernicke RF, Garhammer J, Jobe FW. Human patellar-tendon rupture. J Bone Joint Surg Am. 1977;59:179–83.

    Article  CAS  PubMed  Google Scholar 

  53. Komi PV, Salonen M, Jarvinen M,et al. In vivo registration of Achilles tendon forces in man. I. Methodological development. Int J Sports Med. 1987; 8 Suppl 1:3–1988.

    Google Scholar 

  54. Komi PV, Fukashiro S, Jarvinen M. Biomechanical loading of Achilles tendon during normal locomotion. Clin Sports Med. 1992;11:521–31.

    CAS  PubMed  Google Scholar 

  55. Barfred T. Experimental rupture of the Achilles tendon. Comparison of various types of experimental rupture in rats. Acta Orthop Scand. 1971;42:528–43.

    Article  CAS  PubMed  Google Scholar 

  56. Stanish WD, Curwin S, Rubinovich M. Tendinitis: the analysis and treatment for running. Clin Sports Med. 1985;4:593–609.

    CAS  PubMed  Google Scholar 

  57. Riggin C. N., Morris T. R., Soslowsky L. J. Tendinopathy II: Etiology, Pathology, and healing of Tendon Injury and Disease. In: Gomes M. E., Reis R. L., Rodrigues M. T. editors. Tendon degeneration: understanding tissue physiology and development to engineer functional substitutes. 1st ed. Elsevier, Amsterdam 2015. p. 149–183.

    Google Scholar 

  58. Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am. 2005;87(1):187–202.

    PubMed  Google Scholar 

  59. Soldatis JJ, Goodfellow DB, Wilber JH. End-to-end operative repair of Achilles tendon rupture. Am J Sports Med. 1997;25:90–5.

    Article  CAS  PubMed  Google Scholar 

  60. Inglis AE, Scott WN, Sculco TP, et al. Ruptures of the tendo achillis. An objective assessment of surgical and non-surgical treatment. J Bone Joint Surg Am. 1976;58:990–3.

    Article  CAS  PubMed  Google Scholar 

  61. Tallon C, Maffulli N, Ewen SW. Ruptured Achilles tendons are significantly more degenerated than tendinopathic tendons. Med Sci Sports Exerc. 2001;33:1983–90.

    Article  CAS  PubMed  Google Scholar 

  62. Lin TW, Cardenas L, Soslowsky LJ. Biomechanics of tendon injury and repair. J Biomech. 2004;37(6):865–77.

    Article  PubMed  Google Scholar 

  63. Maffulli N, Khan KM, Puddu G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy. 1998;14:840–3.

    Article  CAS  PubMed  Google Scholar 

  64. Maffulli N, Kader D. Tendinopathy of tendo achillis. J Bone Joint Surg Br. 2002;84(1):1–8.

    Article  PubMed  Google Scholar 

  65. Abate M, Silbernagel KG, Siljeholm C, et al. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther. 2009;11(3):235.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Selvanetti A, Cipolla M, Puddu G. Overuse tendon injuries: basic science and classification. Oper Tech Sports Med. 1997;5:110–7.

    Article  Google Scholar 

  67. Riley GP, Curry V, DeGroot J, et al. Matrix metalloproteinas activities and their relationship with collagen remodelling in tendon pathology. Matrix Biol. 2002;21(2):185–95.

    Article  CAS  PubMed  Google Scholar 

  68. Fu SC, Rolf C, Cheuk YC, et al. Deciphering the pathogenesis of tendinopathy: a three-stages process. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:30.

    PubMed  PubMed Central  Google Scholar 

  69. Hashimoto T, Nobuhara K, Hamada T. Pathologic evidence of degeneration as a primary cause of rotator cuff tear. Clin Orthop Relat Res. 2003;415:111–20.

    Article  Google Scholar 

  70. Nicholson GP, Goodman DA, Flatow EL, et al. The acromion: morphologic condition and age-related changes. A study of 420 scapulas. J Shoulder Elb Surg. 1996;5(1):1–11.

    Article  CAS  Google Scholar 

  71. Uhthoff HK. Calcifying tendinitis, an active cell-mediated calcification. Virchows Arch A Pathol Anat Histol. 1975;366(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  72. September AV, Schwellnus MP, Collins M. Tendon and ligament injuries: the genetic component. Br J Sports Med. 2007;41(4):241–6. discussion 6

    Article  PubMed  PubMed Central  Google Scholar 

  73. September AV, Mokone GG, Schwellnus MP, et al. Genetic risk factors for Achilles tendon injuries. Int J Sports Med. 2006;7(3):201.

    Google Scholar 

  74. Raspanti M, Manelli A, Franchi M, et al. The 3D structure of crimps in the rat Achilles tendon. Matrix Biol. 2005;24(7):503–7.

    Article  CAS  PubMed  Google Scholar 

  75. James R, Kesturu G, Balian G, et al. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008;33(1):102–12.

    Article  PubMed  Google Scholar 

  76. Yasuda K, Hayashi K. Changes in biomechanical properties of tendons and ligaments from joint disuse. Osteoarthr Cartil. 1999;7(1):122–9.

    Article  CAS  PubMed  Google Scholar 

  77. Hannafin JA, Arnoczky SP, Hoonjan A, et al. Effect of stress deprivation and cyclic tensile loading on the material and morphologic properties of canine flexor digitorum profundus tendon: an in vitro study. J Orthop Res. 1995;13(6):907–14.

    Google Scholar 

  78. Sun YL, Thoreson AR, Cha SS, et al. Temporal response of canine flexor tendon to limb suspension. J Appl Physiol 1985 (2010);109(6):1762–1768.

    Google Scholar 

  79. Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 2012;46(3):163–8.

    Article  CAS  PubMed  Google Scholar 

  80. Soslowsky LJ, Thomopoulos S, Esmail A, et al. Rotator cuff tendinosis in an animal model: role of extrinsic and overuse factors. Ann Biomed Eng. 2002;30(8):1057–63.

    Article  PubMed  Google Scholar 

  81. Hofmeister EP, Craven Jr CE. Zone I rupture of the flexor digitorum profundus tendon caused by blunt trauma: a case report. J Hand Surg Am. 2008;33(2):247–9.

    Article  PubMed  Google Scholar 

  82. Khan KM, Maffulli N. Tendinopathy: an Achilles’ heel for athletes and clinicians. Clin J Sport Med. 1998;8:151–4.

    Article  CAS  PubMed  Google Scholar 

  83. Astrom M, Rausing A. Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings. Clin Orthop. 1995;316:151–64.

    Google Scholar 

  84. Maffulli N, Barrass V, Ewen SW. Light microscopic histology of achilles tendon ruptures. A comparison with unruptured tendons. Am J Sports Med. 2000;28:857–63.

    CAS  PubMed  Google Scholar 

  85. Jarvinen M, Jozsa L, Kannus P, et al. Histopathological findings in chronic tendon disorders. Scand J Med Sci Sports. 1997;7:86–95.

    Article  CAS  PubMed  Google Scholar 

  86. Burry HC, Pool CJ. Central degeneration of the achilles tendon. Rheumatol Rehabil. 1973;12:177–81.

    Article  Google Scholar 

  87. Burry HC, Pool CJ. The pathology of the painful heel. Br J Sports Med. 1971;6:9–12.

    Article  PubMed Central  Google Scholar 

  88. Colosimo AJ, Bassett III. FH. Jumper’s knee. Diagnosis and treatment. Orthop Rev. 1990;19:139–49.

    CAS  PubMed  Google Scholar 

  89. Yu JS, Popp JE, Kaeding CC, et al. Correlation of MR imaging and pathologic findings in athletes undergoing surgery for chronic patellar tendinitis. AJR Am J Roentgenol. 1995;165:115–8.

    Article  CAS  PubMed  Google Scholar 

  90. Fukuda H, Hamada K, Yamanaka K. Pathology and pathogenesis of bursalside rotator cuff tears viewed from en bloc histologic sections. Clin Orthop. 1990;254:75–80.

    Google Scholar 

  91. Cole AS, Cordiner-Lawrie S, Carr AJ, et al. Localised deposition of amyloid in tears of the rotator cuff. J Bone Joint Surg Br. 2001;83:561–4.

    Article  CAS  PubMed  Google Scholar 

  92. Leadbetter WB. Cell-matrix response in tendon injury. Clin Sports Med. 1992;11:533–78.

    CAS  PubMed  Google Scholar 

  93. Khan KM, Cook JL, Bonar F, et al. Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med. 1999;27:393–408.

    Article  CAS  PubMed  Google Scholar 

  94. Bestwick CS, Maffulli N. Reactive oxygen species and tendon problems: review and hypothesis. Sports Med Arthroscopy Rev. 2000;8:6–16.

    Article  Google Scholar 

  95. Kvist M. Achilles tendon injuries in athletes. Ann Chir Gynaecol. 1991:188–201.

    Google Scholar 

  96. Jozsa L, Kannus P. Histopathological findings in spontaneous tendon ruptures. Scand J Med Sci Sports. 1997;7:113–8.

    Article  CAS  PubMed  Google Scholar 

  97. Nelen G, Martens M, Burssens A. Surgical treatment of chronic Achilles tendinitis. Am J Sports Med. 1989;17:754–9.

    Article  CAS  PubMed  Google Scholar 

  98. Clancy Jr WG, Neidhart D, Brand RL. Achilles tendonitis in runners: a report of five cases. Am J Sports Med. 1976;4:46–57.

    Article  PubMed  Google Scholar 

  99. Arner O, Lindholm A, Orell SR. Histologic changes in subcutaneous rupture of the Achilles tendon; a study of 74 cases. Acta Chir Scand. 1959;116:484–90.

    CAS  PubMed  Google Scholar 

  100. Cetti R, Junge J, Vyberg M. Spontaneous rupture of the Achilles tendon is preceded by widespread and bilateral tendon damage and ipsilateral inflammation: a clinical and histopathologic study of 60 patients. Acta Orthop Scand. 2003;74:78–84.

    Article  PubMed  Google Scholar 

  101. Oxlund H. Relationships between the biomechanical properties, composition and molecular structure of connective tissues. Connect Tissue Res. 1986;15:65–72.

    Article  CAS  PubMed  Google Scholar 

  102. Yuan J, Murrell GA, Trickett A, et al. Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblasts. Biochim Biophys Acta. 2003;1641:35–41.

    Article  CAS  PubMed  Google Scholar 

  103. Machner A, Baier A, Wille A, et al. Higher susceptibility to Fas ligand induced apoptosis and altered modulation of cell death by tumor necrosis factor-alpha in periarticular tenocytes from patients with knee joint osteoarthritis. Arthritis Res Ther. 2003;5:R253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Corps AN, Harrall RL, Curry VA, et al. Ciprofloxacin enhances the stimulation of matrix metalloproteinase 3 expression by interleukin-1beta in human tendon-derived cells. A potential mechanism of fluoroquinolone-induced tendinopathy. Arthritis Rheum. 2002;46:3034–40.

    Article  CAS  PubMed  Google Scholar 

  105. Van der Linden PD, Sturkenboom MC, Herings RM, et al. Fluoroquinolones and risk of Achilles tendon disorders: case-control study. BMJ. 2002;324:1306–7.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Corps AN, Curry VA, Harrall RL, et al. Ciprofloxacin reduces the stimulation of prostaglandin E(2) output by interleukin-1beta in human tendon-derived cells. Rheumatology (Oxford). 2003;42:1306–10.

    Article  CAS  Google Scholar 

  107. Williams III RJ, Attia E, Wickiewicz TL, et al. The effect of ciprofloxacin on tendon, paratenon, and capsular fibroblast metabolism. Am J Sports Med. 2000;28:364–9.

    Article  PubMed  Google Scholar 

  108. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.

    Article  CAS  PubMed  Google Scholar 

  109. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995;7:728–35.

    Article  CAS  PubMed  Google Scholar 

  110. Ireland D, Harrall R, Curry V, et al. Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol. 2001;20:159–69.

    Article  CAS  PubMed  Google Scholar 

  111. Alfredson H, Lorentzon M, Backman S, et al. cDNA-arrays and real-time quantitative PCR techniques in the investigation of chronic Achilles tendinosis. J Orthop Res. 2003;21:970–5.

    Article  CAS  PubMed  Google Scholar 

  112. Choi HR, Kondo S, Hirose K, et al. Expression and enzymatic activity of MMP-2 during healing process of the acute supraspinatus tendon tear in rabbits. J Orthop Res. 2002;20:927–33.

    Article  CAS  PubMed  Google Scholar 

  113. Lefrancais E, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A. 2012;109:1673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kakkar R, Hei H, Dobner S, et al. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J. Biol. Chem. 2012;287:6941–8.

    Google Scholar 

  115. Millar NL, Gilchrist DS, Akbar M, et al. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease. Nat Commun. 2015;6. Available from: http://view.ncbi.nlm.nih.gov/pubmed/25857925

  116. Alfredson H, Bjur D, Thorsen K, et al. High intratendinous lactate levels in painful chronic Achilles tendinosis. An investigation using microdialysis technique. J Orthop Res. 2002;20:934–8.

    Article  CAS  PubMed  Google Scholar 

  117. Alfredson H, Thorsen K, Lorentzon R. In situ microdialysis in tendon tissue: high levels of glutamate, but not prostaglandin E2 in chronic Achilles tendon pain. Knee Surg Sports Traumatol Arthrosc. 1999;7:378–81.

    Google Scholar 

  118. Zubrzycka M, Janecka A. Substance P: transmitter of nociception (minireview). Endocr Regul. 2000;34:195–201.

    CAS  PubMed  Google Scholar 

  119. Ljung BO, Forsgren S, Friden J. Sympathetic and sensory innervations are heterogeneously distributed in relation to the blood vessels at the extensor carpi radialis brevis muscle origin of man. Cells Tissues Organs. 1999;165:45–54.

    Article  CAS  PubMed  Google Scholar 

  120. Ljung BO, Alfredson H, Forsgren S. Neurokinin 1-receptors and sensory neuropeptides in tendon insertions at the medial and lateral epicondyles of the humerus. Studies on tennis elbow and medial epicondylalgia. J Orthop Res. 2004;22:321–7.

    Article  CAS  PubMed  Google Scholar 

  121. Brodin E, Gazelius B, Panopoulos P, et al. Morphine inhibits substance P release from peripheral sensory nerve endings. Acta Physiol Scand. 1983;1(17):567–70.

    Article  Google Scholar 

  122. Yaksh TL. Substance P release from knee joint afferent terminals: modulation by opioids. Brain Res. 1988;458:319–24.

    Article  CAS  PubMed  Google Scholar 

  123. Docheva D, Müller SA, Majewski M, et al. Biologics for tendon repair. Adv Drug Deliv Rev. 2015;84:222–39.

    Article  CAS  PubMed  Google Scholar 

  124. Hope M, Saxby TS. Tendon healing. Foot Ankle Clin. 2007;12(4):553–67.

    Article  PubMed  Google Scholar 

  125. Fenwick SA, Hazleman BL, Riley GP. The vasculature and its role in the damaged and healing tendon. Arthritis Res. 2002;4:252–60.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Robbins JR, Evanko SP, Vogel KG. Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon. Arch Biochem Biophys. 1997;342(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  127. Wang JH, Jia F, Yang G, et al. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res. 2003;44(3–4):128–33.

    Google Scholar 

  128. Skutek M, van Griensven M, Zeichen J, et al. Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur J Appl Physiol. 2001;86(1):48–52.

    Article  CAS  PubMed  Google Scholar 

  129. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–98.

    Article  CAS  PubMed  Google Scholar 

  130. Tillman LJ, Chasan NP. Properties of dense connective tissue and wound healing. In: Hertling D, Kessler RM, editors. Management of common musculoskeletal disorders: physical therapy principles and methods. 3rd ed. Philadelphia: Lippincott; 1996. p. 8–21.

    Google Scholar 

  131. Hooley CJ, Cohen RE. A model for the creep behaviour of tendon. Int J Biol Macromol. 1979;1:123–32.

    Article  Google Scholar 

  132. Farkas LG, McCain WG, Sweeney P, et al. An experimental study of changes following silastic rod preparation of a new tendon sheath and subsequent tendon grafting. J Bone Joint Surg Am. 1973;55:1149–58.

    Article  CAS  PubMed  Google Scholar 

  133. Amiel D, Akeson W, Harwood FL, et al. Stress deprivation effect on metabolic turnover of medial collateral ligament collagen. A comparison between nine- and 12-week immobilization. Clin Orthop. 1983;172:265–70.

    CAS  Google Scholar 

  134. Evans CH. Cytokines and the role they play in the healing of ligaments and tendons. Sports Med. 1999;28:71–6.

    Article  CAS  PubMed  Google Scholar 

  135. Manning CN, Havlioglu N, Knutsen E, et al. The early inflammatory response after flexor tendon healing: a gene expression and histological analysis. J Orthop Res. 2014;32(5):645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bedi A, Maak T, Walsh C, et al. Cytokines in rotator cuff degeneration and repair. J Shoulder Elb Surg. 2012;21(2):218–27.

    Article  Google Scholar 

  137. Oliva F, Via AG, Maffulli N. Role of growth factors in rotator cuff healing. Sports Med Arthrosc. 2011;19(3):218–26.

    Article  PubMed  Google Scholar 

  138. Chang J, Most D, Thunder R, et al. Molecular studies in flexor tendon wound healing: the role of basic fibroblast growth factor gene expression. J Hand Surg [Am]. 1998;23:1052–8.

    Article  CAS  Google Scholar 

  139. Heisterbach PE, Todorov A, Fluckiger R, et al. Effect of BMP-12, TGFbeta1 and autologous conditioned serumon growth factor expression in Achilles tendon healing. Knee Surg Sports Traumatol Arthrosc. 2012;20:1907–14.

    Article  PubMed  Google Scholar 

  140. Wurgler-Hauri CC, Dourte LM, Baradet TC, et al. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elb Surg. 2007;16:S198–203.

    Article  Google Scholar 

  141. Muller SA, Todorov A, Heisterbach PE, et al. Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2097–105.

    Article  PubMed  Google Scholar 

  142. Kurtz CA, Loebig TG, Anderson DD, et al. Insulin-like growth factor I accelerates functional recovery from Achilles tendon injury in a rat model. Am J Sports Med. 1999;27(3):363–9.

    CAS  PubMed  Google Scholar 

  143. Sciore P, Boykiw R, Hart DA. Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. J Orthop Res. 1998;16:429–37.

    Article  CAS  PubMed  Google Scholar 

  144. Del Buono A, Oliva F, Osti L, et al. Metalloproteases and tendinopathy. Muscles Ligaments Tendons J. 2013;3(1):51–7.

    PubMed  PubMed Central  Google Scholar 

  145. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–33.

    Article  CAS  PubMed  Google Scholar 

  146. Oshiro W, Lou J, Xing X, et al. Flexor tendon healing in the rat: a histologic and gene expression study. J Hand Surg [Am]. 2003;28:814–23.

    Article  Google Scholar 

  147. Murrell GA, Szabo C, Hannafin JA, et al. Modulation of tendon healing by nitric oxide. Inflamm Res. 1997;46:19–27.

    Article  CAS  PubMed  Google Scholar 

  148. Szomor ZL, Appleyard RC, Murrell GA. Overexpression of nitric oxide synthases in tendon overuse. J Orthop Res. 2006;24(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  149. Chan BP, Fu SC, Qin L, et al. Supplementation-time dependence of growth factors in promoting tendon healing. Clin Orthop Relat Res. 2006;448:240–7.

    Article  CAS  PubMed  Google Scholar 

  150. Stein LE. Effects of serum, fibroblast growth factor, and platelet-derived growth factor on explants of rat tail tendon: a morphological study. Acta Anat (Basel). 1985;123(4):247–52.

    Article  CAS  Google Scholar 

  151. Zhang J, Wang JH. Production of PGE(2) increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. J Orthop Res. 2010;28(2):198–203.

    PubMed  Google Scholar 

  152. Alfredson H. The chronic painful Achilles and patellar tendon: research on basic biology and treatment. Scand J Med Sci Sports. 2005;15:252–9.

    Article  PubMed  Google Scholar 

  153. Schubert TE, Weidler C, Lerch K, et al. Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann Rheum Dis. 2005;64:1083–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cury PR, Canavez F, de Araujo VC, et al. Substance P regulates the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in cultured human gingival fibroblasts. J Periodontal Res. 2008;43:255–60.

    Article  CAS  PubMed  Google Scholar 

  155. Vasko MR, Campbell WB, Waite KJ. Prostaglandin E2 enhances bradykininstimulated release of neuropeptides from rat sensory neurons in culture. J Neurosci. 1994;14:4987–97.

    CAS  PubMed  Google Scholar 

  156. Schaible HG, Grubb BD. Afferent and spinal mechanisms of joint pain. Pain. 1993;55:5–54.

    Article  CAS  PubMed  Google Scholar 

  157. Gotoh M, Hamada K, Yamakawa H, et al. Increased substance P in subacromial bursa and shoulder pain in rotator cuff diseases. J Orthop Res. 1998;16(5):618–21.

    Article  CAS  PubMed  Google Scholar 

  158. Chang J, Thunder R, Most D, et al. Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg. 2000;105:148–55.

    Article  CAS  PubMed  Google Scholar 

  159. Natsu-ume T, Nakamura N, Shino K, et al. Temporal and spatial expression of transforming growth factor-beta in the healing patellar ligament of the rat. J Orthop Res. 1997;15:837–43.

    Article  CAS  PubMed  Google Scholar 

  160. Chang J, Most D, Stelnicki E, et al. Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg. 1997;100:937–44.

    Google Scholar 

  161. Ngo M, Pham H, Longaker MT, et al. Differential expression of transforming growth factor-beta receptors in a rabbit zone II flexor tendon wound healing model. Plast Reconstr Surg. 2001;108:1260–7.

    Article  CAS  PubMed  Google Scholar 

  162. Juneja SC, Schwarz EM, O'Keefe RJ, et al. Cellular and molecular factors in flexor tendon repair and adhesions: a histological and gene expression analysis. Connect Tissue Res. 2013;54:218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kashiwagi K, Mochizuki Y, Yasunaga Y, et al. Effects of transforming growth factor-beta 1 on the early stages of healing of the Achilles tendon in a rat model. Scand J Plast Reconstr Surg Hand Surg. 2004;38(4):193–7.

    Article  PubMed  Google Scholar 

  164. Klein MB, Yalamanchi N, Pham H, et al. Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production. J Hand Surg Am. 2002;27(4):615–20.

    Google Scholar 

  165. Gulotta LV, Kovacevic D, Cordasco F, et al. Evaluation of tumor necrosis factor alpha blockade on early tendon-to-bone healing in a rat rotator cuff repair model. Arthroscopy. 2011;27(10):1351–7.

    Article  PubMed  Google Scholar 

  166. Petersen W, Unterhauser F, Pufe T, et al. The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Arch Orthop Trauma Surg. 2003;123:168–74.

    Article  PubMed  Google Scholar 

  167. Boyer MI, Watson JT, Lou J, et al. Quantitative variation in vascular endothelial growth factor mRNA expression during early flexor tendon healing: an investigation in a canine model. J Orthop Res. 2001;19(5):869–72.

    Article  CAS  PubMed  Google Scholar 

  168. Lomas AJ, Ryan CN, Sorushanova A, et al. The past, present and future in scaffold-based tendon treatments. Adv Drug Deliv Rev. 2015;84:257–77.

    Article  CAS  PubMed  Google Scholar 

  169. Lundborg G, Rank F, Heinau B. Intrinsic tendon healing. A new experimental model. Scand J Plast Reconstr Surg. 1985;19(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  170. Edelstein L, Thomas SJ, Soslowsky LJ. Rotator cuff tears: what have we learned from animal models? J Musculoskelet Neuronal Interact. 2011;11(2):150–62.

    CAS  PubMed  Google Scholar 

  171. Cadby JA, Buehler E, Godbout C, et al. Differences between the cell populations from the peritenon and the tendon core with regard to their potential implication in tendon repair. PLoS One. 2014;9(3):e92474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Manske PR, Lesker PA. Biochemical evidence of flexor tendon participation in the repair process—an in vitro study. J Hand Surg (Br). 1984;9:117–20.

    Google Scholar 

  173. Gelberman RH, Manske PR, Vande Berg JS, et al. Flexor tendon repair in vitro: a comparative histologic study of the rabbit, chicken, dog, and monkey. J Orthop Res. 1984;2:39–48.

    Google Scholar 

  174. Potenza AD. Tendon healing within the flexor digital sheath in the dog. Am J Orthop. 1962;44:49–64.

    Google Scholar 

  175. Kajikawa Y, Morihara T, Watanabe N, et al. GFP chimeric models exhibited a biphasic pattern of mesenchymal cell invasion in tendon healing. J Cell Physiol. 2007;210(3):684–91.

    Article  CAS  PubMed  Google Scholar 

  176. Sharma P, Maffulli N. Basic biology of tendon injury and healing. Surgeon. 2005;3(5):309–16.

    Article  CAS  PubMed  Google Scholar 

  177. Gelberman RH, Amiel D, Harwood F. Genetic expression for type I procollagen in the early stages of flexor tendon healing. J Hand Surg [Am]. 1992;17:551–8.

    Article  CAS  Google Scholar 

  178. Garner WL, JA MD, Kuhn III C, et al. Autonomous healing of chicken flexor tendons in vitro. J Hand Surg [Am]. 1988;13:697–700.

    Google Scholar 

  179. Manske PR, Gelberman RH, Lesker PA. Flexor tendon healing. Hand Clin. 1985;1:25–34.

    CAS  PubMed  Google Scholar 

  180. Mast BA, Haynes JH, Krummel TM, et al. In vivo degradation of fetal wound hyaluronic acid results in increased fibroplasia, collagen deposition, and neovascularization. Plast Reconstr Surg. 1992;89:503–9.

    Article  CAS  PubMed  Google Scholar 

  181. Fujita M, Hukuda S, Doida Y. Experimental study of intrinsic healing of the flexor tendon: collagen synthesis of the cultured flexor tendon cells of the canine. Nippon Seikeigeka Gakkai Zasshi. 1992;66:326–33.

    CAS  PubMed  Google Scholar 

  182. Ingraham JM, Hauck RM, Ehrlich HP. Is the tendon embryogenesis process resurrected during tendon healing? Plast Reconstr Surg. 2003;112:844–54.

    Article  PubMed  Google Scholar 

  183. Lundborg G, Rank F. Experimental studies on cellular mechanisms involved in healing of animal and human flexor tendon in synovial environment. Hand. 1980;12:3–11.

    Article  CAS  PubMed  Google Scholar 

  184. Lundborg G, Hansson HA, Rank F, et al. Superficial repair of severed flexor tendons in synovial environment. An experimental, ultrastructural study on cellular mechanisms. J Hand Surg [Am]. 1980;5:451–61.

    Article  CAS  Google Scholar 

  185. Russell JE, Manske PR. Collagen synthesis during primate flexor tendon repair in vitro. J Orthop Res. 1990;8:13–20.

    Google Scholar 

  186. Becker H, Graham MF, Cohen IK, et al. Intrinsic tendon cell proliferation in tissue culture. J Hand Surg [Am]. 1981;6:616–9.

    Article  CAS  Google Scholar 

  187. Koob TJ. Biomimetic approaches to tendon repair. Comp Biochem Physiol A Mol Integr Physiol. 2002;133:1171–92.

    Article  PubMed  Google Scholar 

  188. Klein MB, Pham H, Yalamanchi N, et al. Flexor tendon wound healing in vitro: the effect of lactate on tendon cell proliferation and collagen production. J Hand Surg [Am]. 2001;26:847–54. Erratum in: J Hand Surg [Am]. 2002; 27:740

    Google Scholar 

  189. Riederer-Henderson MA, Gauger A, Olson L, et al. Attachment and extracellular matrix differences between tendon and synovial fibroblastic cells. In Vitro. 1983;19:127–33.

    Article  CAS  PubMed  Google Scholar 

  190. Koob TJ, Summers AP. Tendon—bridging the gap. Comp Biochem Physiol A Mol Integr Physiol. 2002;133:905–9.

    Article  PubMed  Google Scholar 

  191. Liu SH, Yang RS, al-Shaikh R, et al. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res. 1995;318:265–78.

    Google Scholar 

  192. Abbah S, Spanoudes K, O'Brien T, et al. Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models. Stem Cell Res Ther. 2014;5:38.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Yin Z, Chen X, Chen J-L, et al. Stem cells for tendon tissue engineering and regeneration. Expert Opin Biol Ther. 2010;10:689–700.

    Article  CAS  PubMed  Google Scholar 

  194. Liu CF, Aschbacher-Smith L, Barthelery NJ, et al. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. Tissue Eng B Rev. 2011;17:165–76.

    Article  CAS  Google Scholar 

  195. Bullough R, Finnigan T, Kay A, et al. Tendon repair through stem cell intervention: cellular and molecular approaches. Disabil Rehabil. 2008;30:1746–51.

    Article  PubMed  Google Scholar 

  196. Lui PP, Ng SW. Cell therapy for the treatment of tendinopathy—a systematic review on the pre-clinical and clinical evidence. Semin Arthritis Rheum. 2013;42:651–66.

    Article  PubMed  Google Scholar 

  197. Platt MA. Tendon repair and healing. Clin Podiatr Med Surg. 2005;22:553–60.

    Article  PubMed  Google Scholar 

  198. Oryan AMA. A long term study on the role of exogenous human recombinant basic fibroblast growth factor on the superficial digital flexor tendon healing in rabbits. J Musculoskelet Nueronal Interact. 2011;11:185–95.

    CAS  Google Scholar 

  199. Dunkman AA, Buckley MR, Mienaltowski MJ, et al. The tendon injury response is influenced by decorin and biglycan. Ann Biomed Eng. 2014;42:619–30.

    Article  PubMed  Google Scholar 

  200. Hasslund S, Jacobson JA, Dadali T, et al. Adhesions in a murine flexor tendon graft model: autograft versus allograft reconstruction. J Orthop Res. 2008;26:824–33.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Frykman E, Jacobsson S, Widenfalk B. Fibrin sealant in prevention of flexor tendon adhesions: an experimental study in the rabbit. J Hand Surg. 1993;18:68–75.

    Article  CAS  Google Scholar 

  202. Killian ML, Cavinatto L, Galatz LM, et al. The role of mechanobiology in tendon healing. J Shoulder Elb Surg. 2012;21(2):228–37.

    Article  Google Scholar 

  203. Gimbel JA, Van Kleunen JP, Williams GR, et al. Long durations of immobilization in the rat result in enhanced mechanical properties of the healing supraspinatus tendon insertion site. J Biomech Eng. 2007;129(3):400–4.

    Article  CAS  PubMed  Google Scholar 

  204. Galatz LM, Charlton N, Das R, et al. Complete removal of load is detrimental to rotator cuff healing. J Shoulder Elb Surg. 2009;18(5):669–75.

    Article  Google Scholar 

  205. Bring D, Reno C, Renstrom P, et al. Prolonged immobilization compromises up-regulation of repair genes after tendon rupture in a rat model. Scand J Med Sci Sports. 2010;20(3):411–7.

    Article  CAS  PubMed  Google Scholar 

  206. Akeson WH, Woo SL, Amiel D, et al. The connective tissue response to immobility: biochemical changes in periarticular connective tissue of the immobilized rabbit knee. Clin Orthop. 1973;93:356–62.

    Article  CAS  Google Scholar 

  207. Akeson WH, Amiel D, Mechanic GL, et al. Collagen cross-linking alterations in joint contractures: changes in the reducible cross-links in periarticular connective tissue collagen after nine weeks of immobilization. Connect Tissue Res. 1977;5:15–9.

    Article  CAS  PubMed  Google Scholar 

  208. Maffulli N, King JB. Effects of physical activity on some components of the skeletal system. Sports Med. 1992;13:393–407.

    Article  CAS  PubMed  Google Scholar 

  209. Gelberman RH, Vande Berg JS, Lundborg GN, et al. Flexor tendon healing and restoration of the gliding surface. An ultrastructural study in dogs. J Bone Joint Surg Am. 1983;65(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  210. Gelberman RH, Woo SL, Lothringer K, et al. Effects of early intermittent passive mobilization on healing canine flexor tendons. J Hand Surg Am. 1982;7(2):170–5.

    Article  CAS  PubMed  Google Scholar 

  211. Almekinders LC, Baynes AJ, Bracey LW. An in vitro investigation into the effects of repetitive motion and nonsteroidal antiinflammatory medication on human tendon fibroblasts. Am J Sports Med. 1995;23:119–23.

    Google Scholar 

  212. Zeichen J, van Griensven M, Bosch U. The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med. 2000;28:888–92.

    CAS  PubMed  Google Scholar 

  213. Tanaka H, Manske PR, Pruitt DL, et al. Effect of cyclic tension on lacerated flexor tendons in vitro. J Hand Surg [Am]. 1995;20:467–73.

    Google Scholar 

  214. Nabeshima Y, Grood ES, Sakurai A, et al. Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. J Orthop Res. 1996;14:123–30.

    Google Scholar 

  215. Buckwalter JA. Activity vs. rest in the treatment of bone, soft tissue and joint injuries. Iowa Orthop J. 1995;15:29–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Buckwalter JA. Effects of early motion on healing of musculoskeletal tissues. Hand Clin. 1996;12:13–24.

    CAS  PubMed  Google Scholar 

  217. Chow JA, Thomes LJ, Dovelle S, et al. Controlled motion rehabilitation after flexor tendon repair and grafting. A multi-centre study. J Bone Joint Surg Br. 1988;70:591–5.

    CAS  PubMed  Google Scholar 

  218. Cullen KW, Tolhurst P, Lang D, et al. Flexor tendon repair in zone 2 followed by controlled active mobilisation. J Hand Surg [Br]. 1989;14:392–5.

    Article  CAS  Google Scholar 

  219. Elliot D, Moiemen NS, Flemming AF, et al. The rupture rate of acute flexor tendon repairs mobilized by the controlled active motion regimen. J Hand Surg [Br]. 1994;19:607–12.

    Article  CAS  Google Scholar 

  220. Eliasson P, Andersson T, Hammerman M, et al. Primary gene response to mechanical loading in healing rat Achilles tendons. J Appl Physiol (1985). 2013;114(11):1519–26.

    Article  CAS  Google Scholar 

  221. Peltz CD, Sarver JJ, Dourte LM, et al. Exercise following a short immobilization period is detrimental to tendon properties and joint mechanics in a rat rotator cuff injury model. J Orthop Res. 2010;28(7):841–5.

    PubMed  PubMed Central  Google Scholar 

  222. Banes AJ, Horesovsky G, Larson C, et al. Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthr Cartil. 1999;7:141–53.

    Google Scholar 

  223. Bruns J, Kampen J, Kahrs J, et al. Achilles tendon rupture: experimental results on spontaneous repair in a sheep-model. Knee Surg Sports Traumatol Arthrosc. 2000;8:364–9.

    Article  CAS  PubMed  Google Scholar 

  224. Manske PR. Flexor tendon healing. J Hand Surg (Br). 1988;13:237–45.

    Article  CAS  Google Scholar 

  225. Branford OA, Klass BR, Grobbelaar AO, et al. The growth factors involved in flexor tendon repair and adhesion formation. J Hand Surg Eur Vol. 2014;39(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  226. Tang JB. Clinical outcomes associated with flexor tendon repair. Hand Clin. 2005;21:199–210.

    Article  PubMed  Google Scholar 

  227. Angeline ME, Rodeo SA. Biologics in the management of rotator cuff surgery. Clin Sports Med. 2012;31(4):645–63.

    Article  PubMed  Google Scholar 

  228. Dahlgren LA, Mohammed HO, Nixon AJ. Temporal expression of growth factors and matrix molecules in healing tendon lesions. J Orthop Res. 2005;23:84–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Maffulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Aicale, R., Tarantino, D., Maffulli, N. (2017). Basic Science of Tendons. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics