Skip to main content

Gene Therapy

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

The musculoskeletal system is subject to a high number of injuries and chronic diseases, such as osteoarthritis (OA), cartilage defects, meniscal lesions, fractures, tendon and ligament injuries. They inflict significant burdens for the respective health care systems.

Neither Dr. Madry, Dr. Orth, Dr. Venkatesan, Dr. Tao, Dr. Goebel, Dr. Cucchiarini, nor any immediate family member has received anything of value from or has stock or stock options held in a commercial company or institution related directly or indirectly to the subject of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lo KW, Ulery BD, Ashe KM, Laurencin CT. Studies of bone morphogenetic protein-based surgical repair. Adv Drug Deliv Rev. 2012;64(12):1277–91. doi:10.1016/j.addr.2012.03.014. pii:S0169-409X(12)00110-X.

  2. Hustedt JW, Blizzard DJ. The controversy surrounding bone morphogenetic proteins in the spine: a review of current research. Yale J Biol Med. 2014;87(4):549–61.

    PubMed  PubMed Central  Google Scholar 

  3. Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014;14(3):552–9. doi:10.1016/j.spinee.2013.08.060. S1529-9430(13)01984-0 [pii]

    Article  PubMed  Google Scholar 

  4. Faundez A, Tournier C, Garcia M, Aunoble S, Le Huec JC. Bone morphogenetic protein use in spine surgery-complications and outcomes: a systematic review. Int Orthop. 2016;40(6):1309–19. doi:10.1007/s00264-016-3149-8. pii:10.1007/s00264-016-3149-8.

  5. Cahill KS, McCormick PC, Levi AD. A comprehensive assessment of the risk of bone morphogenetic protein use in spinal fusion surgery and postoperative cancer diagnosis. J Neurosurg Spine. 2015;23(1):86–93. doi:10.3171/2014.10.SPINE14338.

    Article  PubMed  Google Scholar 

  6. Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, Helfand M. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902. doi:10.7326/0003-4819-158-12-201306180-00006. pii:1696646.

  7. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–91. doi:10.1016/j.spinee.2011.04.023. pii:S1529-9430(11)00299-3.

  8. Madry H, Cucchiarini M. Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opin Biol Ther. 2016;16(3):331–46. doi:10.1517/14712598.2016.1124084.

    Article  CAS  PubMed  Google Scholar 

  9. Goomer RS, Deftos LJ, Terkeltaub R, Maris T, Lee MC, Harwood FL, Amiel D. High-efficiency non-viral transfection of primary chondrocytes and perichondrial cells for ex-vivo gene therapy to repair articular cartilage defects. Osteoarthr Cartil. 2001;9(3):248–56. doi:10.1053/joca.2000.0382. pii:S1063-4584(00)90382-0.

  10. Guo X, Zheng Q, Yang S, Shao Z, Yuan Q, Pan Z, Tang S, Liu K, Quan D. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater. 2006;1(4):206–15. doi:10.1088/1748-6041/1/4/006. pii:S1748-6041(06)31277-6.

  11. Hu B, Ren JL, Zhang JR, Ma Q, Liu YP, Mao TQ. Enhanced treatment of articular cartilage defect of the knee by intra-articular injection of Bcl-xL-engineered mesenchymal stem cells in rabbit model. J Tissue Eng Regen Med. 2010;4(2):105–14. doi:10.1002/term.212.

    Article  CAS  PubMed  Google Scholar 

  12. Katayama R, Wakitani S, Tsumaki N, Morita Y, Matsushita I, Gejo R, Kimura T. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford). 2004;43(8):980–5. doi:10.1093/rheumatology/keh240. pii:keh240.

  13. Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D, Trippel SB, Madry H. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med. 2006;8(1):100–11. doi:10.1002/jgm.819.

    Article  CAS  PubMed  Google Scholar 

  14. Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D, Trippel SB. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 2005;12(15):1171–9. doi:10.1038/sj.gt.3302515. pii:3302515.

  15. Frisbie DD, Ghivizzani SC, Robbins PD, Evans CH, McIlwraith CW. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther. 2002;9(1):12–20. doi:10.1038/sj.gt.3301608.

    Article  CAS  PubMed  Google Scholar 

  16. Gelse K, von der Mark K, Aigner T, Park J, Schneider H. Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum. 2003;48(2):430–41. doi:10.1002/art.10759.

    Article  CAS  PubMed  Google Scholar 

  17. Ghivizzani SC, Lechman ER, Kang R, Tio C, Kolls J, Evans CH, Robbins PD. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects. Proc Natl Acad Sci U S A. 1998;95(8):4613–8. doi:10.1002/art.10759

  18. Hidaka C, Goodrich LR, Chen CT, Warren RF, Crystal RG, Nixon AJ. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res. 2003;21(4):573–83. doi:10.1016/S0736-0266(02)00264-4. pii:S0736026602002644.

  19. Lechman ER, Jaffurs D, Ghivizzani SC, Gambotto A, Kovesdi I, Mi Z, Evans CH, Robbins PD. Direct adenoviral gene transfer of viral IL-10 to rabbit knees with experimental arthritis ameliorates disease in both injected and contralateral control knees. J Immunol. 1999;163(4):2202–8. pii:ji_v163n4p2202.

    Google Scholar 

  20. Mi Z, Ghivizzani SC, Lechman ER, Jaffurs D, Glorioso JC, Evans CH, Robbins PD. Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthritis Rheum. 2000;43(11):2563–70. doi:10.1002/1529-0131(200011)43:11<2563::AID-ANR25>3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  21. Park J, Gelse K, Frank S, von der Mark K, Aigner T, Schneider H. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med. 2006;8(1):112–25. doi:10.1002/jgm.826.

    Article  CAS  PubMed  Google Scholar 

  22. Grande DA, Mason J, Light E, Dines D. Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am. 2003;85-A(Suppl 2):111–6.

    Article  Google Scholar 

  23. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48(12):3464–74. doi:10.1002/art.11365.

    Article  PubMed  Google Scholar 

  24. Oligino T, Ghivizzani S, Wolfe D, Lechman E, Krisky D, Mi Z, Evans C, Robbins P, Glorioso J. Intra-articular delivery of a herpes simplex virus IL-1Ra gene vector reduces inflammation in a rabbit model of arthritis. Gene Ther. 1999;6(10):1713–20. doi:10.1038/sj.gt.3301014.

    Article  CAS  PubMed  Google Scholar 

  25. Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD, Kohn D, Trippel SB, Terwilliger EF. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther. 2005;12(2):229–38. doi:10.1016/j.ymthe.2005.03.012. pii:S1525-0016(05)00114-0.

  26. Cucchiarini M, Thurn T, Weimer A, Kohn D, Terwilliger EF, Madry H. Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. Arthritis Rheum. 2007;56(1):158–67. doi:10.1002/art.22299.

    Article  CAS  PubMed  Google Scholar 

  27. Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther. 2007;14(10):804–13. doi:10.1038/sj.gt.3302938. pii:3302938.

  28. Watanabe S, Imagawa T, Boivin GP, Gao G, Wilson JM, Hirsch R. Adeno-associated virus mediates long-term gene transfer and delivery of chondroprotective IL-4 to murine synovium. Mol Ther. 2000;2(2):147–52. doi:10.1006/mthe.2000.0111. pii:S1525-0016(00)90111-4.

  29. Zhang HG, Xie J, Yang P, Wang Y, Xu L, Liu D, Hsu HC, Zhou T, Edwards 3rd CK, Mountz JD. Adeno-associated virus production of soluble tumor necrosis factor receptor neutralizes tumor necrosis factor alpha and reduces arthritis. Hum Gene Ther. 2000;11(17):2431–42. doi:10.1089/104303400750038525.

    Article  CAS  PubMed  Google Scholar 

  30. Madry H, Orth P, Cucchiarini M. Gene therapy for cartilage repair. Cartilage. 2011;2(3):201–225. doi:10.1177/1947603510392914. pii:10.1177_1947603510392914.

  31. Frisch J, Venkatesan JK, Rey-Rico A, Madry H, Cucchiarini M. Current progress in stem cell-based gene therapy for articular cartilage repair. Curr Stem Cell Res Ther. 2015;10 (2):121–31. doi:CSCRT-EPUB-62443 [pii]

    Google Scholar 

  32. Madry H, Cucchiarini M. Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croat Med J. 2011;52(3):245–61.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kimelman Bleich N, Kallai I, Lieberman JR, Schwarz EM, Pelled G, Gazit D. Gene therapy approaches to regenerating bone. Adv Drug Deliv Rev. 2012;64(12):1320–30. doi:10.1016/j.addr.2012.03.007. pii:S0169-409X(12)00103-2.

  34. Dmitriev AE, Lehman Jr. RA, Symes AJ. Bone morphogenetic protein-2 and spinal arthrodesis: the basic science perspective on protein interaction with the nervous system. Spine J. 2011;11(6):500–5. doi:10.1016/j.spinee.2011.05.002. pii:S1529-9430(11)00323-8.

  35. Helgeson MD, Lehman Jr. RA, Patzkowski JC, Dmitriev AE, Rosner MK, Mack AW. Adjacent vertebral body osteolysis with bone morphogenetic protein use in transforaminal lumbar interbody fusion. Spine J. 2011;11(6):507–10. doi:10.1016/j.spinee.2011.01.017. pii:S1529-9430(11)00064-7.

  36. Valentin-Opran A, Wozney J, Csimma C, Lilly L, Riedel GE. Clinical evaluation of recombinant human bone morphogenetic protein-2. Clin Orthop Relat Res. 2002;395:110–20.

    Article  Google Scholar 

  37. Zachos T, Diggs A, Weisbrode S, Bartlett J, Bertone A. Mesenchymal stem cell-mediated gene delivery of bone morphogenetic protein-2 in an articular fracture model. Mol Ther. 2007;15(8):1543–50. doi:10.1038/sj.mt.6300192. pii:6300192.

  38. Virk MS, Sugiyama O, Park SH, Gambhir SS, Adams DJ, Drissi H, Lieberman JR. “Same day” ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol Ther. 2011;19(5):960–8. doi:10.1038/mt.2011.2. pii:mt20112.

  39. Einhorn TA. The science of fracture healing. J Orthop Trauma. 2005;19(10 Suppl):S4–6. doi:00005131-200511101-00002 [pii].

    Google Scholar 

  40. Khan SN, Solaris J, Ramsey KE, Yang X, Bostrom MP, Stephan D, Daluiski A. Identification of novel gene expression in healing fracture callus tissue by DNA microarray. HSS J. 2008;4(2):149–60. doi:10.1007/s11420-008-9087-2.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao Z, Wang Z, Ge C, Krebsbach P, Franceschi RT. Healing cranial defects with AdRunx2-transduced marrow stromal cells. J Dent Res. 2007;86(12):1207–1211. pii:86/12/1207.

    Google Scholar 

  42. Zou D, Zhang Z, Ye D, Tang A, Deng L, Han W, Zhao J, Wang S, Zhang W, Zhu C, Zhou J, He J, Wang Y, Xu F, Huang Y, Jiang X. Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1alpha. Stem Cells. 2011;29(9):1380–90. doi:10.1002/stem.693.

    CAS  PubMed  Google Scholar 

  43. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL, Yang ZJ, Luo SL, Tang XP, Li S. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(4):412–9. doi:10.1016/j.tripleo.2010.05.012. pii:S1079-2104(10)00324-0.

  44. Cui F, Wang X, Liu X, Dighe AS, Balian G, Cui Q. VEGF and BMP-6 enhance bone formation mediated by cloned mouse osteoprogenitor cells. Growth Factors. 2010;28(5):306–17. doi:10.3109/08977194.2010.484423.

    Article  CAS  PubMed  Google Scholar 

  45. Koh JT, Zhao Z, Wang Z, Lewis IS, Krebsbach PH, Franceschi RT. Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration. J Dent Res. 2008;87(9):845–9. pii:87/9/845.

    Google Scholar 

  46. Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA, McCauley LK, Davidson BL, Roessler BJ. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci U S A. 1996;93(12):5753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ito H, Koefoed M, Tiyapatanaputi P, Gromov K, Goater JJ, Carmouche J, Zhang X, Rubery PT, Rabinowitz J, Samulski RJ, Nakamura T, Soballe K, O’Keefe RJ, Boyce BF, Schwarz EM. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med. 2005:11(3):291–7. doi:10.1038/nm1190. pii:nm1190.

  48. Evans C. Gene therapy for the regeneration of bone. Injury. 2011;42(6):599–604. doi:10.1016/j.injury.2011.03.032. pii:S0020-1383(11)00126-4.

  49. Balmayor ER, van Griensven M. Gene therapy for bone engineering. Front Bioeng Biotechnol. 2015;3:9. doi:10.3389/fbioe.2015.00009.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ishihara A, Shields KM, Litsky AS, Mattoon JS, Weisbrode SE, Bartlett JS, Bertone AL. Osteogenic gene regulation and relative acceleration of healing by adenoviral-mediated transfer of human BMP-2 or -6 in equine osteotomy and ostectomy models. J Orthop Res. 2008;26(6):764–71. doi:10.1002/jor.20585.

  51. Bullough PG, Munuera L, Murphy J, Weinstein AM. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br. 1970;52(3):564–7.

    CAS  PubMed  Google Scholar 

  52. Verdonk PC, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, Verbruggen G. Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil. 2005;13(7):548–60. doi:10.1016/j.joca.2005.01.010. pii:S1063-4584(05)00050-6.

  53. Arnoczky SP, Warren RF. The microvasculature of the meniscus and its response to injury. An experimental study in the dog. Am J Sports Med. 1983;11(3):131–41.

    Article  CAS  PubMed  Google Scholar 

  54. Englund M, Guermazi A, Roemer FW, Aliabadi P, Yang M, Lewis CE, Torner J, Nevitt MC, Sack B, Felson DT. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: the Multicenter Osteoarthritis Study. Arthritis Rheum. 2009;60(3):831–9. doi:10.1002/art.24383.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Englund M, Lohmander LS. Patellofemoral osteoarthritis coexistent with tibiofemoral osteoarthritis in a meniscectomy population. Ann Rheum Dis. 2005;64(12):1721–26. doi:10.1136/ard.2005.035568. pii:ard.2005.035568.

  56. Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 1998;41(4):687–93. doi:10.1002/1529-0131(199804)41:4<687::AID-ART16>3.0.CO;2-2.

    Article  CAS  PubMed  Google Scholar 

  57. Heckmann TP, Barber-Westin SD, Noyes FR. Meniscal repair and transplantation: indications, techniques, rehabilitation, and clinical outcome. J Orthop Sports Phys Ther. 2006;36(10):795–814. doi:10.2519/jospt.2006.2177.

    Article  PubMed  Google Scholar 

  58. Cucchiarini M, Henrionnet C, Mainard D, Pinzano A, Madry H. New trends in articular cartilage repair. J Exp Orthop. 2015;2(1):8. doi:10.1186/s40634-015-0026-0.

  59. Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res. 2009;467(12):3165–74. doi:10.1007/s11999-009-0921-8.

  60. Cucchiarini M, Schetting S, Terwilliger EF, Kohn D, Madry H. rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and alpha-SMA expression in human meniscal lesions. Gene Ther. 2009;16(11):1363–72. doi:10.1038/gt.2009.91. pii:gt200991.

  61. Lee HP, Rey-Rico A, Cucchiarini M, Madry H. Nonviral gene transfer into human meniscal cells. Part II: effect of three-dimensional environment and overexpression of human fibroblast growth factor 2. Int Orthop. 2014;38(9):1931–6. doi:10.1007/s00264-014-2405-z.

    Article  PubMed  Google Scholar 

  62. Cucchiarini M, Schmidt K, Frisch J, Kohn D, Madry H. Overexpression of TGF-beta via rAAV-mediated gene transfer promotes the healing of human meniscal lesions ex vivo on exmlanted Menisci. Am J Sports Med. 2015;43(5):1197–205. doi:10.1177/0363546514567063. pii:0363546514567063.

  63. Steinert AF, Palmer GD, Capito R, Hofstaetter JG, Pilapil C, Ghivizzani SC, Spector M, Evans CH. Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-beta 1 complementary deoxyribonucleic acid. Tissue Eng. 2007;13(9):2227–37. doi:10.1089/ten.2006.0270.

    Article  CAS  PubMed  Google Scholar 

  64. Goto H, Shuler FD, Niyibizi C, Fu FH, Robbins PD, Evans CH. Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFbeta(1)gene. Osteoarthr Cartil. 2000;8(4):266–71. doi:10.1053/joca.1999.0300. pii:S1063-4584(99)90300-X.

  65. Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015;11(4):234–42. doi:10.1038/nrrheum.2015.28. pii:nrrheum.2015.28.

  66. Hildebrand KA, Frank CB, Hart DA. Gene intervention in ligament and tendon: current status, challenges, future directions. Gene Ther. 2004;11(4):368–78. doi:10.1038/sj.gt.3302198. pii:3302198

  67. Negahi Shirazi A, Chrzanowski W, Khademhosseini A, Dehghani F. Anterior cruciate ligament: structure, injuries and regenerative treatments. Adv Exp Med Biol. 2015;881:161–86. doi:10.1007/978-3-319-22345-2_10.

    Article  CAS  PubMed  Google Scholar 

  68. Madry H, Kohn D, Cucchiarini M. Direct FGF-2 gene transfer via recombinant adeno-associated virus vectors stimulates cell proliferation, collagen production, and the repair of experimental lesions in the human ACL. Am J Sports Med. 2013;41(1):194–202. doi:10.1177/0363546512465840. pii:0363546512465840.

  69. Menetrey J, Kasemkijwattana C, Day CS, Bosch P, Fu FH, Moreland MS, Huard J. Direct-, fibroblast- and myoblast-mediated gene transfer to the anterior cruciate ligament. Tissue Eng. 1999;5(5):435–42. doi:10.1089/ten.1999.5.435.

    Article  CAS  PubMed  Google Scholar 

  70. Nakamura N, Hart DA, Boorman RS, Kaneda Y, Shrive NG, Marchuk LL, Shino K, Ochi T, Frank CB. Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J Orthop Res. 2000;18(4):517–23. doi:10.1002/jor.1100180402.

    Article  CAS  PubMed  Google Scholar 

  71. Nakamura N, Shino K, Natsuume T, Horibe S, Matsumoto N, Kaneda Y, Ochi T. Early biological effect of in vivo gene transfer of platelet-derived growth factor (PDGF)-B into healing patellar ligament. Gene Ther. 1998;5(9):1165–70. doi:10.1038/sj.gt.3300712.

    Article  CAS  PubMed  Google Scholar 

  72. Vavken P, Saad FA, Fleming BC, Murray MM. VEGF receptor mRNA expression by ACL fibroblasts is associated with functional healing of the ACL. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1675–82. doi:10.1007/s00167-011-1443-y.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Weimer A, Madry H, Venkatesan JK, Schmitt G, Frisch J, Wezel A, Jung J, Kohn D, Terwilliger EF, Trippel SB, Cucchiarini M. Benefits of recombinant adeno-associated virus (rAAV)-mediated insulin-like growth factor I (IGF-I) overexpression for the long-term reconstruction of human osteoarthritic cartilage by modulation of the IGF-I axis. Mol Med. 2012;18:346–58. doi:10.2119/molmed.2011.00371. pii:molmed.2011.00371.

  74. Woo SL, Jia F, Zou L, Gabriel MT. Functional tissue engineering for ligament healing: potential of antisense gene therapy. Ann Biomed Eng. 2004;32(3):342–51.

    Article  PubMed  Google Scholar 

  75. Hildebrand KA, Deie M, Allen CR, Smith DW, Georgescu HI, Evans CH, Robbins PD, Woo SL. Early expression of marker genes in the rabbit medial collateral and anterior cruciate ligaments: the use of different viral vectors and the effects of injury. J Orthop Res. 1999;17(1):37–42. doi:10.1002/jor.1100170107.

    Article  CAS  PubMed  Google Scholar 

  76. Colzani G, Tos P, Battiston B, Merolla G, Porcellini G, Artiaco S. Traumatic extensor tendon injuries to the hand: clinical anatomy, biomechanics, and surgical procedure review. J Hand Microsurg. 2016;8(1):2–12. doi:10.1055/s-0036-1572534. pii:1500055.

  77. Nourissat G, Berenbaum F, Duprez D. Tendon injury: from biology to tendon repair. Nat Rev Rheumatol. 2015;11(4):223–33. doi:10.1038/nrrheum.2015.26. pii:nrrheum.2015.26.

  78. Taras JS, Lamb MJ. Treatment of flexor tendon injuries: surgeons’ perspective. J Hand Ther. 1999;12(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  79. Wang CJ, Weng LH, Hsu SL, Sun YC, Yang YJ, Chan YS, Yang YL. pCMV-BMP-2-transfected cell-mediated gene therapy in anterior cruciate ligament reconstruction in rabbits. Arthroscopy. 2010;26(7):968–76. doi:10.1016/j.arthro.2009.11.014. pii:S0749-8063(09)00992-X.

  80. Basile P, Dadali T, Jacobson J, Hasslund S, Ulrich-Vinther M, Soballe K, Nishio Y, Drissi MH, Langstein HN, Mitten DJ, O’Keefe RJ, Schwarz EM, Awad HA. Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery. Mol Ther. 2008;16 (3):466–73. doi:10.1038/sj.mt.6300395. pii:6300395.

  81. Bolt P, Clerk AN, Luu HH, Kang Q, Kummer JL, Deng ZL, Olson K, Primus F, Montag AG, He TC, Haydon RC, Toolan BC. BMP-14 gene therapy increases tendon tensile strength in a rat model of Achilles tendon injury. J Bone Joint Surg Am. 2007;89(6):1315–20. doi:10.2106/JBJS.F.00257. pii:89/6/1315.

  82. Hasslund S, Dadali T, Ulrich-Vinther M, Soballe K, Schwarz EM, Awad HA. Freeze-dried allograft-mediated gene or protein delivery of growth and differentiation factor 5 reduces reconstructed murine flexor tendon adhesions. J Tissue Eng. 2014;5:2041731414528736. doi:10.1177/2041731414528736. pii:10.1177_2041731414528736.

  83. Hou Y, Mao Z, Wei X, Lin L, Chen L, Wang H, Fu X, Zhang J, Yu C. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing. Matrix Biol. 2009;28(6):324–35. doi:10.1016/j.matbio.2009.04.007. pii:S0945-053X(09)00042-0.

  84. Hou Y, Mao Z, Wei X, Lin L, Chen L, Wang H, Fu X, Zhang J, Yu C. The roles of TGF-beta1 gene transfer on collagen formation during Achilles tendon healing. Biochem Biophys Res Commun. 2009;383(2):235–9. doi:10.1016/j.bbrc.2009.03.159. pii:S0006-291X(09)00661-5.

  85. Lou J, Manske PR, Aoki M, Joyce ME. Adenovirus-mediated gene transfer into tendon and tendon sheath. J Orthop Res. 1996;14(4):513–7. doi:10.1002/jor.1100140403.

    Article  CAS  PubMed  Google Scholar 

  86. Rickert M, Wang H, Wieloch P, Lorenz H, Steck E, Sabo D, Richter W. Adenovirus-mediated gene transfer of growth and differentiation factor-5 into tenocytes and the healing rat Achilles tendon. Connect Tissue Res. 2005;46(4–5):175–83. doi:10.1080/03008200500237120. pii:P0016246392153T8.

  87. Tang JB, Cao Y, Zhu B, Xin KQ, Wang XT, Liu PY. Adeno-associated virus-2-mediated bFGF gene transfer to digital flexor tendons significantly increases healing strength. an in vivo study. J Bone Joint Surg Am. 2008;90(5):1078–1089. doi:10.2106/JBJS.F.01188. pii:90/5/1078.

  88. Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, Wozney JM, Rosen V. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest. 1997;100(2):321–30. doi:10.1172/JCI119537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Madry M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Madry, H., Orth, P., Venkatesan, J.K., Tao, K., Goebel, L., Cucchiarini, M. (2017). Gene Therapy. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics