Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1171 Accesses

Abstract

Human load capacity can refer to the load carriage standard for individual soldier. The individual soldier load is divided into combat load and marching load, mainly including weapons load, life load and single-soldier quartermaster equipment load.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yang Zhiyong, Gui Lihua, Yang Xiuxia, Gu Wenjin. On Virtual Force Control of Exoskeleton Suit [J]. Robot, 2009, 31 (5).

    Google Scholar 

  2. Yang Zhiyong, Gui Lihua, Yang Xiuxia, Gu Wenjin. Exoskeleton Suit Neural Network Sensitivity Amplification Technique [J]. Journal of Jilin University Engineering and Technology Edition, 2009, 39 (3): 824-829.

    Google Scholar 

  3. Yang Zhiyong. Exoskeleton Suit’s Force Control Method Research and the Prototype Design for Individual Load [D]. Naval Aeronautical Engineering Institute, Doctor, Yantai: 2009.

    Google Scholar 

  4. Chen Ying, Yang Canjun. The Human-Machine Intelligent System [M]. Hangzhou: Zhejiang University Press, 2006.

    Google Scholar 

  5. Peter, Neuhaus, Kazerooni H. Design and Control of Human Assisted Walking Robot [C]. Proceedings of 2000 IEEE International Conference on Robotics & Automation, San Francisco, 2000: 563–569.

    Google Scholar 

  6. Vukobratovic, M, Ciric V, Hristic D. Contribution to the study of active exoskeletons [C]. Proceedings of the 5th International Federation of Automatic Control Congress, Paris, France, 1972: 13–19.

    Google Scholar 

  7. Hristic, D, M Vukobratovic. Development of Active Aids for Handicapped [C]. Proceedings of the III International Conference on Biomedical Engineering, Sorrento, Italy, 1973: 123–129.

    Google Scholar 

  8. Aaron, M. Dollar, Hugh Herr. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art [J]. IEEE Transactions on Robotics, 2008, 24 (1): 144–158.

    Google Scholar 

  9. Colombo, Gery, Matthias Jorg, Volker Dietz. Driven Gait Orthosis to do Locomotor Training of Paraplegic Patients [C]. Proceedings of the 22nd Annual EMBS International Conference, Chicago IL, 2000: 3159–3163.

    Google Scholar 

  10. Daniel, P. Ferris, Gregory S. Sawicki, Antoinette R. Domingo. Powered Lower Limb Orthoses for Gait Rehabilitation [J]. Topics in Spinal Cord Injury Rehabilitation, 2005, 11 (2): 34–49.

    Google Scholar 

  11. Ekkelenkamp, R., Veneman Jan F., H. Van Der Kooij. LOPES: Selective control of gait functions during the gait rehabilitation of CVA patients [C]. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 2005: 361–364.

    Google Scholar 

  12. Nelson, Costa, Darwin G. Caldwell. Control of a Biomimetic “Soft-actuated” 10 DoF Lower Body Exoskeleton [J].

    Google Scholar 

  13. Pieter, Beyl, Joris Naudet, Ronald Van Ham, Dirk Lefeber. Mechanical Design of an Active Knee Orthosis for Gait Rehabilitation [C]. Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 2007: 100–105.

    Google Scholar 

  14. Veneman, J F, R. Ekkelenkamp, R. Kruidhof, F. C. T. Van Der Helm, H. Van Der Kooij. Design of a series elastic- and bowdencale-based actuation system for use as torque-actuator in exoskeleton-type training [C]. Proceedings of the 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 2005: 496–499.

    Google Scholar 

  15. Veneman, Jan F., Rik Kruidhof, Edsko E. G. Hekman, Ralf Ekkelenkamp, Edwin H. F. Van Asseldonk, Herman Van Der Kooij. Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15 (3): 379–386.

    Google Scholar 

  16. “Hardiman.” http://www.davidszondy.com/future/robot/hardiman.htm.

  17. Kazerooni, H, Steger R. The Berkeley Lower Extremity Exoskeleton [J]. Journal of Dynamic Systems, Measurement, and Control, 2005, 128 (3): 14–25.

    Google Scholar 

  18. “Exoskeletons for Human Performance Augmentation (EHPA).” http://www.beachbrowser.com/Archives/Science-and-Health/January-2001/Exoskeletons-for-Human-Augmentation.htm.

  19. Richardson, B. S., J. F. Jansen, J. F. Birdwell, A. C. Boynton, Iii H. P. Crowell, W. K. Durfee, J. D. Gongola, S. M. Killough, D. J. Leo, R. F. Lind, L. J. Love, M. Mungiole, F. G. Pin, J. C. Rowe, O. A. Velev, T. Zambrano. Phase I Report: DARPA Exoskeleton Program [R]. ORNL/TM-2003/216, 2004.

    Google Scholar 

  20. John, Jansen, Brad Richardson, Francois Pin, Randy Lind, Joe Birdwell. Exoskeleton for Soldier Enhancement Systems Feasibility Study [R]. ORNL/TM-2000/256, 2000.

    Google Scholar 

  21. Racine, Jean-Louis Charles. Control of a Lower Extremity Exoskeleton for Human Performance Amplification [D]. University of California, Ph. D, Berkeley: 2003.

    Google Scholar 

  22. Kazerooni, H, Huang L H, Steger R. On the Control of the Berkeley lower extremity exoskeleton (BLEEX) [C]. Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2005), Barcelona, Spain, 2005: 4353–4360.

    Google Scholar 

  23. Chu, Andrew, Kazerooni H, Adam B Zoss. On the Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX) [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005: 4345–4352.

    Google Scholar 

  24. Huang, Lihua. Robotics Locomotion Control [D]. University of California, Ph. D, Berkeley: 2005.

    Google Scholar 

  25. Zoss, Adam B., Kazerooni H, Andrew Chu. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) [J]. IEEE/ASME Transactions on Mechatronics, 2006, 11 (2): 128–138.

    Google Scholar 

  26. Ghan, Justin, Ryan Steger, Kazerooni H. Control and System Identification for the Berkeley Lower Extremity Exoskeleton(BLEEX) [J]. Advanced Robotics, 2006, 20 (9): 989–1014.

    Google Scholar 

  27. Kazerooni, H. Human/ Robot Interaction via the Transfer of Power and Information Signals, Part I: Dynamics and Control Analysis [C]. IEEE International Conference on Robotics and Automation, 1989: 1632–1640.

    Google Scholar 

  28. Kazerooni, H. Human/ Robot Interaction via the Transfer of Power and Information Signals, Part II: An Experimental Analysis [C]. IEEE International Conference on Robotics and Automation, 1989: 1641–1647.

    Google Scholar 

  29. Zoss, Adam, Kazerooni H. Design of an electrically actuated lower extremity exoskeleton [J]. Advanced Robotics, 2006, 20 (9): 967–988.

    Google Scholar 

  30. Amundson, Kurt, Justin Raade, Nathan Harding, Kazerooni H. Development of hybrid hydraulic–electric power units for field and service robots [J]. Advanced Robotics, 2006, 20 (9): 1015–1034.

    Google Scholar 

  31. Chu, Andrew. Design of the Berkeley Lower Extremity Exoskeleton (BLEEX) [D]. University of California, Ph. D., Berkeley: 2005.

    Google Scholar 

  32. Steger, John Ryan. A design and control methodology for human exoskeletons [D]. University of California, Ph.D, Berkeley: 2006.

    Google Scholar 

  33. Zoss, Adam Brain. Actuation Design and Implementation for Lower Extremity Human Exoskeletons [D]. University of California, Ph.D, Berkeley: 2006.

    Google Scholar 

  34. Ryan, Steger, Sung Hoon Kim, Kazerooni H. Control Scheme and Networked Control Architecture for the Berkeley Lower Extremity Exoskeleton (BLEEX) [C]. Proceedings of the 2006 International Conference on Robotics and Automation, Orlando, Florida, 2006: 3469–3477.

    Google Scholar 

  35. Chu, Andrew. Design of the Berkeley Lower Extremity Exoskeleton (BLEEX) [D]. University of California, Ph. D, Berkeley: 2005.

    Google Scholar 

  36. Meng Zhaoyu. Rescue Armor [J]. Popular Science, 2008, (6): 64–75.

    Google Scholar 

  37. Conor, James Walsh, Ken Endo, Hugh Herr. A Quasi-Passive Leg Exoskeleton for Load-Carring Augmentation [J]. International Journal of Humanoid Robotics, 2007, (5): 1 ~ 21.

    Google Scholar 

  38. Hugh, Herr, Ari Wilkenfeld. User-adaptive Control of a Magneto rheological prosthetic knee [J]. Industrial Robot: An International Journal, 2003, 30 (1): 42–55.

    Google Scholar 

  39. Conor, James Walsh, Kenneth Pasch Scd Pe, Herr Hugh. An autonomous, under actuated exoskeleton for load-carrying augmentation [C]. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Beijing, China, 2006: 1410–1415.

    Google Scholar 

  40. Conor, Jame Walsh, Daniel Paluska, Kenneth Pasch, William Grand, Andrew Valiente, Herr Hugh. Development of a lightweight under actuated exoskeleton for load-carrying augmentation [C]. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006: 3485–3491.

    Google Scholar 

  41. Wang Yong, Yang Jie. The Status of Study Based on Passive-Dynamic Bipedal Robot [J]. Robot Technique and Application, 2005, (6): 31–33.

    Google Scholar 

  42. Gong Mingming, Zhu Weibing, Li Feng. Key Research Point of Passive Dynamic Walking [J]. Mechanical Engineer, 2006, (8): 106–108.

    Google Scholar 

  43. Steve, Collins, Andy Ruina, Russ Tedrake, Martijn Wisse. Efficient Bipedal Robots Based on Passive-Dynamic Walkers [J]. Science, 2005, 307 (18): 1082–1085.

    Google Scholar 

  44. Timothy, G. Mcgee, Justin W. Raade, Homayoon Kazerooni. Theoretical Analysis and Experimental Verification of a Monopropellant Driven Free Piston Hydraulic Pump [C]. Proceedings of 2003 ASME International Mechanical Engineering Congress & Exposition, Washington, D. C., 2003: 1–7.

    Google Scholar 

  45. Justin, William Raade. Graphical Analysis of Power Systems for Mobile Robotics [D]. University of California, Ph. D, Berkeley: 2006.

    Google Scholar 

  46. Sunghoon, Kim, George Anwar, Kazerooni H. High-speed Communication Network for Controls with the Application on the Exoskeleton [C]. Proceedings of the 2004 American Control Conference, Boston, Massachusetts, 2004: 355–360.

    Google Scholar 

  47. Sunghoon, Kim. Design and Analysis of High-speed Ring-based Networked Control Systems for Real-time Application [D]. University of California, Ph. D, Berkeley: 2005.

    Google Scholar 

  48. Jason, Wheeler, Brandon Rohrer, Deepesh Kholwadwala, Stephen Buerger, Richard Givler, Jason Neely, Clint Hobart, Paul Galambos. In-Sole MEMS Pressure Sensing for a Lower-Extremity Exoskeleton [C]. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 2006: 31–34.

    Google Scholar 

  49. Joseph, J. Misuraca, Constantinos Mavroidis. Lower Limb Human Muscle Enhancer [C]. Proceedings of IMECE01: International Mechanical Engineering Conference and Exposition, New York, New York, 2001: 1–7.

    Google Scholar 

  50. “berkeley bionics.” http://www.berkeleybionics.com/Companyprofile.html.

  51. Meng Ma. Freedom of Walking [J]. 21st Century Business Review, 2010, (11): 100–101.

    Google Scholar 

  52. “XOS-2.” http://www.workercn.cn/.

  53. Okamura, J, Tanaka H, Sankai Y. EMG-based Prototype Powered Assistive system for Walking Aid [C]. Proceedings of Asian Symposium on Industrial Automation and Robotics (ASIAR’ 99), Bangkok, Thailand, 1999: 229–234.

    Google Scholar 

  54. Lee, S, Sankai Y. Power Assist Control for Walking Aid with HAL-3 Based on EMG and Impedance Adjustment around Knee Joint [C]. Proceedings of IEEE/RSJ International Conf on Intelligent Robots and Systems (IROS 2002), EPFL, Switzerland, 2002: 1499–1504.

    Google Scholar 

  55. Lee, S, Sankai Y. Power assist control for leg with HAL-3 based on virtual torque and impedance adjustment [C]. Proceedings of IEEE International Conference on Systems, Man and Cybernetics (SMC), Hammamet, Tunisia, 2002: TP1B3 (CD-ROM).

    Google Scholar 

  56. Kawamoto, Hiroaki, Yoshiyuki Sankai. Power assist system HAL-3 for gait disorder person [C]. International Conference on Computers Helping People with Special Needs, Linz, Austria, 2002: 196–203.

    Google Scholar 

  57. Kawamoto, Hiroaki, Yoshiyuki Sankai. Comfortable Power Assist Control Method for Walking Aid by HAL-3 [C]. Proceedings of IEEE International Conference on System, Man, and Cybernetics (SMC 2002), Hammamet, Tunisia, 2002: 190–193.

    Google Scholar 

  58. Kawamoto, Hiroaki, Yoshiyuki Sankai. Power Assist Method Based on Phase Sequence Driven by Interaction between Human and Robot Suit [C]. Proceedings of the 2004 IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki, Okayama Japan, 2004: 491–496.

    Google Scholar 

  59. Kawamoto, Hiroaki, Shigehiro Kanbe, Yoshiyuki Sankai. Power Assist Method for HAL-3 Estimating Operator’s Insertion Based on Motion Information [C]. Proceedings of the 2003 IEEE International Workshop on Robot and Human Interactive Communication, Millbrae, California, USA, 2003: 67–72.

    Google Scholar 

  60. Kota, Kasaoka, Yoshiyuki Sankai. Predictive Control Estimating Operator’s Intention for Stepping-up Motion by Exoskeleton Type Power Assist System HAL [C]. Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA, 2001: 1578–1583.

    Google Scholar 

  61. “sanlab HAL.” http://sanlab.kz.tsukuba.ac.jp/HAL/indexE.html.

  62. Kawamoto, Hiroaki, Tomoya Shiraki, Tasuku Otsuka, Yoshiyuki Sankai. Meal-Assistance by Robot Suit HAL using Detection of Food Position with Camera [C]. Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket Thailand, 2011: 889–894.

    Google Scholar 

  63. Yamamoto, K., M. Ishii. Stand Alone Wearable Power Assisting Suit—Sensing and Control Systems [C]. 13th IEEE International Workshop on Robot and Human Interactive Communication, Roma, Italy, 2004: 661–666.

    Google Scholar 

  64. Yoshiitsu, T., K. Yamamoto. Development of a Power Assist Suit for Nursing Work [C]. SCIE 2004 Annual Conference, Sapporo, Tokyo, 2004: 577–580.

    Google Scholar 

  65. Kim, Yoon Sang, Jangwook Lee, Sooyong Lee, Munsang Kim. A Force Reflected Exoskeleton-Type Master arm for Human-Robot Interactions [J]. IEEE Transactions on System, Man, and Cybernetics-Part A: Systems and Humans, 2005, 35 (2): 198–212.

    Google Scholar 

  66. Kim, Wan-Soo, Seung-Hoon Lee, Hee-Don Lee, Seung-Nam Yu, Jung-Soo Han, Chang-Soo Han. Development of the Heavy Load Transferring Task Oriented Exoskeleton Adapted by Lower Extremity Using Qausi-active Joints [C]. ICROS-SICE International Joint Conference, Fukuoka, Japan, 2009: 1353–1358.

    Google Scholar 

  67. Kong, Kyoungchul, Joonbum Bae, Masayoshi Tomizuka. Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications [J]. IEEE/ASME Transactions on Mechatronics, 2009, 14 (1): 105–118.

    Google Scholar 

  68. Kong, Kyoungchul, Masayoshi Tomizuka. A Gait Monitoring System Based on Air Pressure Sensors Embedded in a Shoe [J]. IEEE/ASME Transactions on Mechatronics, 2009, 14 (3): 358–370.

    Google Scholar 

  69. Kong, Kyoungchul, Masayoshi Tomizuka. Control of Exoskeletons Inspired by Fictitious Gain in Human Model [J]. IEEE/ASME Transactions on Mechatronics, 2009, 14 (6): 689–698.

    Google Scholar 

  70. Liu, Xiaopeng, K. H. Low. Development and Preliminary Study of the NTU Lower Extremity Exoskeleton [C]. Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 2004: 1243–1247.

    Google Scholar 

  71. Liu, Xiaopeng, K. H. Low, Hao Yong Yu. Development of a Lower Extremity Exoskeleton for Human Performance Enhancement [C]. Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004: 3889–3894.

    Google Scholar 

  72. Low, K. H., Xiaopeng Liu, C. H. Goh, Hao Yong Yu. Locomotive Control of a Wearable Lower Exoskeleton for Walking Enhancement [J]. Journal of Vibration and Control, 2006, 12 (12): 1311–1316.

    Google Scholar 

  73. Low, K. H., Xiaopeng Liu, Hao Yong Yu, Hendra S Kasim. Development of a Lower Extremity Exoskeleton—Preliminary Study for Dynamic Walking [C]. The 8th International Conference on Control Automation, Robotics and Vision, Kunming, China, 2004: 2088–2093.

    Google Scholar 

  74. Jerry, E. Pratt, Benjamin T. Krupp, Christopher J. Morse, Steven H. Collins. The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking [C]. Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, 2004: 2430–2435.

    Google Scholar 

  75. Bergamasco, Massimo, Fabio Salsedo, Simone Marcheschi, Nicola Lucchesi, Marco Fontana. A Novel Compact and Lightweight Actuator for Wearable Robots [C]. IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, 2010: 4197–4203.

    Google Scholar 

  76. Keitaro, Naruse, Satoshi Kawai, Hiroshi Yokoi, Yukinori Kakazu. Development of Wearable Exoskeleton Power Assist System for Lower Back Support [C]. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003: 3630–3635.

    Google Scholar 

  77. Keitaro, Naruse, Satoshi Kawai, Takuji Kukichi. Three-dimensional Lifting-up Motion Analysis for Wearable Power Assist Device of Lower Back Support [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005: 2959–2964.

    Google Scholar 

  78. Rahman, S. M. Mizanoor, Ryojun Ikeura, Soichiro Hayakawa, Hideki Sawai. Design and Control of a Power Assist System for Lifting Objects Based on Human Operator’s Weight Perception and Load Force Characteristics [J]. IEEE Transactions on Industrial Electronics, 2011, 58 (8): 3141–3150.

    Google Scholar 

  79. Rossi, S.M.M. De, T. Lenzi, N. Vitiello, M. Donati, A. Persichetti, F. Giovacchini, F. Vecchi, M. C. Carrozza. Development of an in-shoe Pressure-Sensitive Device for Gait Analysis [C]. 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts USA, 2011: 5637–5640.

    Google Scholar 

  80. Gabriel, Aguirre-Ollinger, J. Edward Colgate, Michael A. Peshkin, Ambarish Goswami. A 1-DOF Assistive Exoskeleton with Virtual Negative Damping: Effects on the Kinematic Response of the Lower Limbs [C]. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 2007: 1938–1944.

    Google Scholar 

  81. Narari, Amir, Nikos G. Tsagarakis, Bram Vanderborght, Darwin G.Caldwell. A Novel Actuator with Adjustable Stiffness (AwAs) [C]. The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010: 4201–4206.

    Google Scholar 

  82. Aguirre-Ollinger, Gabriel, J. Edward Colgate, Michael A. Peshkin, Ambarrish Goswani. Inertia Compensation Control of a One-Degree-of-Freedom Exoskeleton for Lower-Limb Assistance: Initial Experiments [J]. IEEE Transitions on Neural Systems and Rehabilitation Engineering, 2012, 20 (1): 68–77.

    Google Scholar 

  83. Shunji, Moromugi. Exoskeleton Suit for Human Motion Assistance [D]. University of California, Ph.D, Irvine: 2003.

    Google Scholar 

  84. Niu Bin. The Control Mechanism Study and Realization of Wearable Lower Extremity Exoskeleton [D]. Zhejiang University, Master’s Thesis, Hangzhou: 2006.

    Google Scholar 

  85. Liu Zhijuan. The Control System Research of Multi-Degree of Freedom Lower Extremity Exoskeleton [D]. Zhejiang University, Master’s Thesis, Hangzhou: 2011.

    Google Scholar 

  86. Chen Feng. The Technical Research of Wearable Walking Power Assist Robot [D]. University of Science and Technology of China, Doctoral Dissertation, Hefei: 2007.

    Google Scholar 

  87. Yao Junzhang. The Control System Research of Power-assisted robot’s Frequency Multiplication Algorithm and Hip Joint’s Parallel Mechanism [D]. University of Science and Technology of China, Master’s Thesis, Hefei: 2011.

    Google Scholar 

  88. Heng, Cao, Wenjin Gu, Yuhai Yin, Zhiyong Yang. Neural-Network Inverse Dynamic Online Learning Control on Physical Exoskeleton [C]. 13th International Conference of Neural Information Processing, ICONIP 2006, Hong Kong, 2006: 702–710.

    Google Scholar 

  89. Heng, Cao, Yuhai Yin, Zhengyang Ling. Walk-aided System with Wearable Lower Extremity Exoskeleton for Brain-machine Engineering [C]. Proceedings of the International Conference on Cognitive Neurodynamic, shanghai, China, 2007: 849–855.

    Google Scholar 

  90. Heng, Wang, K. H. Low, Michael Yu Wang. Reference Trajectory Generation for Force Tracking Impedance Control by Using Neural Network-based Environment Estimation [C]. 2006 IEEE Conference on Robotics Automation and Mechatronics, Bangkok, Thailand, 2006: 1–6.

    Google Scholar 

  91. Lei Bing. The Structure Optimization and Performance Evaluation Research of Power-assisted Walking Mechanical Legs [D]. East China University Of Science and Technology, Master’s Thesis, Shanghai: 2011.

    Google Scholar 

  92. Li Xiaoming. The Robot’s Remote Control Based on the Exoskeleton Technology [D]. Zhejiang University, Doctoral Dissertation, Hangzhou: 2004.

    Google Scholar 

  93. Wang Lan, Wang Ting, Zhang Lixun, Deng Zongquan. The Simulation Research of Power-assisted Mechanical Leg [J]. Journal of Machine Design, 2006, 23 (9): 12–15.

    Google Scholar 

  94. Lan, Wang, Zhongquan Deng, Lixun Zhang, Qingxin Meng. Analysis of Assistant Robotic Leg on MATLAB [C]. Proceedings of 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, 2006: 1092–1096.

    Google Scholar 

  95. Deng, Xiaohong, Huanghuan Shen, Feng Chen, Yong Yu, Yunjian Ge. Motion Information Acquisition from Human lower Limbs for wearable Robot [C]. Proceedings of the 2007 International Conference on Information Acquisition, Jeju City, Korea, 2007: 137–142.

    Google Scholar 

  96. Feng, Chen, Yong Yu, Yunjan Ge. Dynamic Model and Motion Control Analysis of the Power Assist Intelligence Leg [C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006: 6346–6350.

    Google Scholar 

  97. Zhao Yanjun. The Working Mechanism Research of Human Body’s Lower Extremity Exoskeleton [D]. Nanjing University of Science and Technology, Master’s Thesis, Nanjing: 2006.

    Google Scholar 

  98. Han, Yali, Wang Xingsong. Kinematics Analysis of Lower Extremity Exoskeleton [C]. 2008 Chinese Control and Decision Conference, Yantai, China, 2008: 2753–2758.

    Google Scholar 

  99. Chen, Jinzhou, Wei-Hsin Liao. Design and Control of a Magneto rheological Actuator for Leg Exoskeleton [C]. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetic, Sanya, China, 2007: 1388–1393.

    Google Scholar 

  100. Yano, H., Kaneko S., Nakazawa K., Yamamoto S-L, Bettoh A. A New Concept of Dynamic Orthosis for Paraplegia: the Weight Bearing Control (WBC) Orthosis [J]. Prosthetics and Orthotics International, 1997, 21 (3): 222–228.

    Google Scholar 

  101. Gui Lihua, Yang Zhiyong, Gu Wenjin, Zhang Yuanshan, Yang Xiuxia. Development of Power Assistance Exoskeleton Suit (NAEIES) [J]. Journal of Naval Aeronautical Engineering Institute, 2007, 22 (4): 467–470.

    Google Scholar 

  102. Ruthenberg, B J, Wasylewski N A, Beard J E. An Experimental Device for Investigating the Force and Power Requirements of a Powered Gait Orthosis [J]. Journal of Rehabilitation Research and Development, 1997, 34 (2): 203–213.

    Google Scholar 

  103. Rosen, J., Brand M., Fuchs M.B., Arcan M. A My signal-Based Powered Exoskeleton System [J]. IEEE Transaction on Systems, Man, and Cybernetics Part A: Systems and Humans, 2001, 31 (3): 210–222.

    Google Scholar 

  104. Marcello, Mulas, Michele Folgheraiter, Giuseppina Gini. An EMG-controlled Exoskeleton for Hand Rehabilitation [C]. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 2005: 371–374.

    Google Scholar 

  105. Matthew, Dicicco, Lenny Lucas, Yoky Matsuoka. Comparison of Control Strategies for an EMG Controlled Orthotic Exoskeleton for the Hand [C]. Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 2004: 1622–1627.

    Google Scholar 

  106. H., Hel, K. Kiguchil. A Study on EMG-Based Control of Exoskeleton Robots for Human Lower-limb Motion Assist [C]. 6th International Special Topic Conference on Information Technology Application in Biomedicine (ITAB), Tokyo, Japan, 2007: 292–295.

    Google Scholar 

  107. Christian, Fleischer, Christian Reinicke, Gunter Hommel. Predicting the Intended Motion with EMG Signals for an Exoskeleton Orthosis Controller [C]. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, Canada, 2005: 2029–2034.

    Google Scholar 

  108. Kiguchi, K., Iwami K., Saza T., Kariya S., Watanabe K., Izumi K., Fukuda T. A Study of an Exoskeletal Robot for Human Shoulder Motion Support [C]. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and systems, Maui Hawaii, USA, 2001: 2111–2116.

    Google Scholar 

  109. Eppinger, S.D., Seering W.P. Understanding Bandwidth Limitations in Robot Force Control [C]. Proceeding of the IEEE International Conference on Robotics and Automation, 1987: 904–909.

    Google Scholar 

  110. Hayashibara, Y., Tanie K., Arai H. Design of a Power Assist System with Consideration of Actuator’s Maximum Torque [C]. Proceedings of the 4th IEEE International Workshop on Robot and Human Communication, New York, USA, 1995: 379–384.

    Google Scholar 

  111. Justin, Ghan, H. Kazerooni. System Identification for the Berkeley Lower Extremity Exoskeleton (BLEEX) [C]. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, USA, 2006: 3477–3484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 National Defense Industry Press and Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Yang, Z., Gu, W., Zhang, J., Gui, L. (2017). Introduction. In: Force Control Theory and Method of Human Load Carrying Exoskeleton Suit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54144-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54144-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54142-5

  • Online ISBN: 978-3-662-54144-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics