Skip to main content

General Introduction

  • Chapter
  • First Online:
  • 655 Accesses

Abstract

Characteristics of cold rolling precision forming technology, present situation of shaft parts manufacturing technology, research progress on the cold rolling precision forming technology, and development trends on cold rolling precision forming technology of shaft parts are introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ming Cuixin. Key and Spline [M]. First Edition, Beijing: China Planning Press, 2004.

    Google Scholar 

  2. Zhang Xingwang, Liu Zhiqi, Li Yongtang. Research of the Cold Rolling Technology for Involute Spline [J]. Electromachining & Mould, 2009, S1: 52–54.

    Google Scholar 

  3. Xu Chunguo. Theory and Process Research of Flexile Rolling for Shaft Forgings [D]. Beijing: China Academy of Machinery Science & Technology, 2006.

    Google Scholar 

  4. Hu Zhenghuan. Rotary Forming (Sixth Chapter, Forging Volume, Forging Handbook) [M]. Beijing: Metallurgical Industry Press, 1996.

    Google Scholar 

  5. Wang Xiankui. Gear, Worm Gear and Worm, Spline Machining [M]. Beijing: China Machine Press, 2008: 361–429.

    Google Scholar 

  6. Liu Zhongwen, Lai Zhouyi, Zhang Yucheng. Application and Development of the Spline Shaft Cold Forming Technology in China [C]. The 9th Annual Academic Meeting of National Plastic Engineering & the 2nd Global Overseas Chinese Symposium on the Advanced Plastic Processing Technology (II): 2005(10): 52–55.

    Google Scholar 

  7. Cui Fengkui, Li Yan, Li Chunmei. Progress in the Processing Method of Involute Spline [J]. Mining & Processing Equipment, 2007, 2: 116–119.

    Google Scholar 

  8. Liao Shaohua. Automotive Gear Processing Technology and Typical Equipment [J]. Modern Components, 2009, 1: 83–87.

    Google Scholar 

  9. Wu Xutang. Principle of Gearing [M]. Beijing: China Machine Press, 1985.

    Google Scholar 

  10. Liu Runai, Zhang Genbao. Development Trend of Gear Hobbing Machine and Gear Hobbing Technology [J]. Machinery Manufacturing Engineer, 2003, 11: 84–86.

    Google Scholar 

  11. Bu Yan. Hub Connection (Second Chapter, Twenty-first Volume, Chinese Mechanical Design Collections) [M]. Nanchang: Jiangxi Publication Press of Science and Technology, 2002.

    Google Scholar 

  12. Steven P. Underation. State-of-the-Art Process Control for Thread Rolling [J]. Fastener Technology International, 1999, 22 (12): 60–62.

    Google Scholar 

  13. Peng Wei, Zhao Yumin, Yang Jine. Influence Factor Analysis of the Extrusion Force in the Spline Tube Cold Extrusion Forming [J]. Machinery, 2006, 44 (504): 35–36.

    Google Scholar 

  14. Lv lin. Study of the Stability of Formation of Axle Shaft Spline in the Extrusion [J]. Metal Forming Technology, 2004,(01): 27–29.

    Google Scholar 

  15. K. Osakada, X. Wang, S. Hanami. Precision Forging of Spline by Flashless Die Forging with Axially Driven Die [J]. CIRP Annals - Manufacturing Technology, 1997, 46: 209–212.

    Google Scholar 

  16. V. V. Klepikov, A. N. Bodrov. Precise Shaping of Splined Shafts in Automobile Manufacturing. Russian Engineering Research. 2003, 23 (12): 37–40.

    Google Scholar 

  17. U. S. Dixit, P. S. Robi, D. K. Sarma. A Systematic Procedure for the Design of a Cold Rolling Mill [J]. Journal of Materials Processing Technology, 2002, 121: 69–76.

    Google Scholar 

  18. Zhang Jiexin. Cold Extruding Forming Process for Small Modulus Involute Spline Shaft [J]. Construction Machinery and Equipment, 2006, 37: 57–59.

    Google Scholar 

  19. http://www.kinefac.com [OL].

  20. Zhang Fengkuan, Men Liantong. Study on the Theoretical Model of Open Type Cold Extrusion of Involute Teeth Spline [J]. China Metal Forming Equipment & Manufacturing Technology, 2006, 3: 95–97.

    Google Scholar 

  21. Yi Hongzhan, Gao Xin, Duan Xinfeng. Application of Spline Shaft Cold Extrusion [J]. Metalforming Machinery, 2002, 5: 33–36.

    Google Scholar 

  22. Cui Fengkui. Study of High-speed Precise Forming with Cold Roll-beating Technique [D]. Xi’an: Xi’an University of Technology, 2007.

    Google Scholar 

  23. http://www.ernst-grob.com [OL].

  24. Cui Fengkui, Zhao Wei, Xu Yongfu, Yang Jianxi. Research on Fibrous Structure and Surface Work-hardening Test of Cold Rolling Involute Spline [J]. Machine Tool & Hydraulics, 2009, 37 (12): 36–38.

    Google Scholar 

  25. Su Zhipeng, Cui Fengkui, Cui Ketian, Du Huiyong, Ge Bianjing. Research and Application of the Mathematical Model of Spline Shaft Cold Rolling Motion [J]. Mining & Processing Equipment, 2006, 36(01): 99–101.

    Google Scholar 

  26. Fengkui Cui, Li Yan, Zhou Yanwei, et al. The Design and Simulation of Roller for Machining Involute Spline [C]. 2006 International Conference on Mechatronics and Automation (ICMA 2006), 2006, 4: 1701–1705.

    Google Scholar 

  27. Robert L. Miller, Warren Mich. Tooth Generating Tool and Method of Making the Same [P]. United States Patent. 3902349, 1975-09-02.

    Google Scholar 

  28. Donald E. Blue, Decatur. Tooth Forming Machine [P]. United States Patent. 3818736, 1974-06-25.

    Google Scholar 

  29. Toshio Moro, Akihiro Goto, Tokyo. Rolling Die and Surface Processing Method for Rolling Die [P]. United States Patent. 6314778B1, 2001-11-13.

    Google Scholar 

  30. Dale J. Garden,Warren Mich. Method of Conditioning the Surface of a Spline Forming Rack [P]. United States Patent. 5509287, 1996-04-23.

    Google Scholar 

  31. Ames T. Killop, Warren Mich. Method and Apparatus for Cold Sizing a Round Workpiece Having Multiple Diameters [P]. United States Patent. 4712410, 1987-12-15.

    Google Scholar 

  32. Philippe Monot, Bragny Sur Saone. Gold Forming Tool, Machine and Method [P]. United States Patent. 7040131B2, 2006-05-09.

    Google Scholar 

  33. Han Fenglin. Study on Technology and Equipment of Cold Roll Forming of Involute Spline [D]. Qinhuangdao: Yanshan University, 2005.

    Google Scholar 

  34. Joseph P. Domblesky, Feng Feng. Finite Element Modeling of External Threading Rolling [J]. Wire Journal International, 2001, 34 (10): 110–115.

    Google Scholar 

  35. Zhang Qing, Fu Zhuang, Kong Xiangdong. Error Analysis of Synchro-Mechanism on CRF Machine [J]. China Mechanical Engineering, 2002, 13 (12): 1004–1009.

    Google Scholar 

  36. Fu Zhuang. Study on Key Technique of Cold Roll Forming Machine [D]. Qinhuangdao: Yanshan University, 2002.

    Google Scholar 

  37. Qiu Ping, Zhang Liling, Zhang Qing. Design and Calculation of the Involute Spline Cold Rolling Dies [J]. Journal of Yanshan University, 2003, 27(03): 244–247.

    Google Scholar 

  38. Zhang Ziliang. Cold Rolling Small Module Involute Spline Gear Pitch Cumulative Error Analysis [J]. Automobile Gear, 2006, 2: 34–35.

    Google Scholar 

  39. Liu Ruiqiu. The Numerical Simulation of Cold Roll Forming of Involute Spline Based on ANSYS [J]. New Technology & New Process, 2006, 11: 53–55.

    Google Scholar 

  40. Zhang Dawei. Theoretical Research on the Process of Spline Cold Rolling [D]. Taiyuan: Taiyuan University of Science and Technology, 2007.

    Google Scholar 

  41. Zheng Quangang. Cold Rolling Forming Technology of Cylindrical Spur Gear with Small Module Involute Spline [J]. Automobile Technology & Material. 1997, 7: 16–18.

    Google Scholar 

  42. Xu Chunguo. Theory and Process Research of Flexile Rolling for Shaft Forgings [D]. Beijing: China Academy of Machinery Science & Technology, 2006.

    Google Scholar 

  43. Wang Minghui. Research on the Process and Key Equipment for Precision Forming of Squr Gears [D]. Changchun: Jilin University, 2010.

    Google Scholar 

  44. Wang Xiulun. Cold Rolling Processing Technology of Threads [M]. Beijing: China Railway Publishing House, 1990.

    Google Scholar 

  45. Qi Huiping. Research on the Theory and Process Parameters of Cold Thread Rolling [D]. Taiyuan: Taiyuan University of Science and Technology, 2007.

    Google Scholar 

  46. R. Boman, L. Papeleux, Q. V. Bui, J. P. Ponthot. Application of the Arbitrary Lagrangian Eulerian Formulation to the Numerical Simulation of Cold Roll Forming Process [J]. Journal of Materials Processing Technology, 2006, 177 (1–3): 621–625.

    Google Scholar 

  47. S. Kobayashi, S. I. Oh, Altan. Metal Forming and the Finite-Element Method [M]. New York: Oxford Press, 1989.

    Google Scholar 

  48. Zhang Xingwang. The Technological and Experimental Study of Spline Cold Rolling [D]. Taiyuan: Taiyuan University of Science and Technology, 2009.

    Google Scholar 

  49. http://www.andersoncook.com/fraser/products.htm [OL].

  50. http://www.profiroll. De [OL].

  51. Li Jingxin. Process Involute Spline with Screw Rolling Machine [J]. Small & Special Machines, 2003, 2: 29–30.

    Google Scholar 

  52. Xue Wenhui. Rolling Machining of Involute Spline on Rolling Machine [J]. Metal Forming Technology, 1999, 17 (3): 46–47.

    Google Scholar 

  53. http://www.qdqs.com.cn [OL].

  54. R. Neugebauer, M. Putz, U. Hellfritzsch. Improved Process Design and Quality for Gear Manufacturing with Flat and Round Rolling [J]. Annals of the CIRP, 2007, 56 (1): 307–312.

    Google Scholar 

  55. R. Neugebauer, U. Hellfritzsch, M. Lahl. Advanced Process Limits by Rolling of Helical Gears [J]. International Journal of Material Forming Supplement, 2008, 1: 1183–1186.

    Google Scholar 

  56. Reimund Neugebauer, Dirk Klug, Udo Hellfritzsch. Description of the Interactions during Gear Rolling as a Basis for a Method for the Prognosis of the Attainable Quality Parameters [J]. Production Engineering – Research and Development, 2007, 1: 253–257.

    Google Scholar 

  57. R. Neugebauer, D. Klug, M. Hoffmann, et al. Applying Mechatronic Strategies in Forming Technology Using the Example of Retrofitting a Cross Rolling Machine [J]. Recent Advances in Mechatronics, 2007, 3: 345–349.

    Google Scholar 

  58. R. Mastunaga, T. Takemasu, T. Ozaki, et al. Spline Rolling of Deep Drawn Cups [J]. Advanced Technology of Plasticity, 1999 (3): 2431–2436.

    Google Scholar 

  59. Amir A. Kamouneh, Jun Ni, David Stephenson, et al. Investigation of Work Hardening of Flat-rolled Helical-involute Gears through Grain-flow Analysis, FE-modeling, and Strain Signature [J]. International Journal of Machine Tools & Manufacture, 2007 (47): 1285–1291.

    Google Scholar 

  60. Zhang Dawei, Li Yongtang, Fu Jianhua, Zheng Quangang. Rolling Force and Rolling Moment in Spline Cold Rolling Using Slip-line Field Method [J]. Chinese Journal of Mechanical Engineering. 2009, 22 (5): 688–695.

    Google Scholar 

  61. Zhang Dawei, Li Yongtang, Fu Jianhua. Tooth Curves and Entire Contact Area in Process of Spline Cold Rolling [J]. Chinese Journal of Mechanical Engineering. 2008, 21 (6): 94–97.

    Google Scholar 

  62. Zhang Dawei, Li Yongtang, Fu Jianhua, Zheng Quangang. Mechanics Analysis on Precise Forming Process of External Spline Cold Rolling [J]. Chinese Journal of Mechanical Engineering. 2007, 20 (3): 54–58.

    Google Scholar 

  63. Zhang Dawei, Li Yongtang, Fu Jian-hua. Theoretical Calculation and Simulation Analysis on the Rolling Contact Area of External Spline Cold Rolling [J]. Journal of Taiyuan University of Science and Technology, 2007, 1: 64–68.

    Google Scholar 

  64. Li Yongtang, Zhang Dawei, Fu Jianhua, Song Jianli. Unit Average Pressure in the External Spline Cold Rolling Process [J]. China Mechanical Engineering, 2007, 24: 2977–2980.

    Google Scholar 

  65. J. P. Domblesky, F. Feng. Two-dimensional and Three-dimensional Finite Element Models of External Thread Rolling [C]. Proceedings of the Institution of Mechanical Engineers, Part B. 2002, 216 (134): 507–509.

    Google Scholar 

  66. M. Stoica, D.E. Fielden, R. McDaniels, Y. Liu, B. Huang, P.K. Liaw, C. Xu.G. Langdon. An Analysis of the Shear Zone for Metals Deformed by Equal-channel Angular Processing [J]. Materials Science and Engineering, 2005, 41: 239–242.

    Google Scholar 

  67. Alves M L, Roderigues J M C, Martins P A F. Cold forging of Gears: Experimental and Theoretical Investigation [J]. Finite Elements in Analysis and Design, 200l, 37: 549–558.

    Google Scholar 

  68. Zheng Kun, Cai Anjiang, Jia Shuang. Dynamic Analysis of Small Module Spline Shaft Based on ANSYS [J]. Journal of Mechanical Transmission, 2011, 35 (4): 44–46.

    Google Scholar 

  69. Wang Mingfu, Fu Jianhua, Liu Zhiqi, Li Yongtang. Finite Element Analysis of Spline Cold Roll Forming Process [J]. Forging & Stamping Technology, 2010, 35 (4):155–159.

    Google Scholar 

  70. Zhou Hang, Zhou Xudong, Zhou Wan. Status and Development Trend in Surface Strengthening Technology for Metal Parts by Surface Rolling [J]. Tool Engineering. 2009, 43 (12): 18–22.

    Google Scholar 

  71. Thread Rolling. Dialog on Disc Book [M]. ASM Handbook. 2001.

    Google Scholar 

  72. Sun Xitai. Surface Strengthening Technology of Materials [M]. Beijing: Chemical Industry Press, 2006.

    Google Scholar 

  73. Gong Guanjun. Cold Rolling Process and the Selection of Tools [J]. Mechanical Technician, 1998, 1: 15–17.

    Google Scholar 

  74. Li Fenglei, Xia Wei, Zhou Zhaoyao. Analytic Study and FEA Validation of Micro-plastic Deformation Depth on Component Surface in Burnishing Process [J]. Machinery Design & Manufacture, 2008, 9 (9): 62–64.

    Google Scholar 

  75. Joseph P. Domblesky, Feng Feng. Finite Element Modeling of External Thread Rolling [C]. The Wine Association Internation, Inc. Wire & Cable Technical Symposium (WCTS) and 70st Annual convention, Jun.2000, Nashville, Tennessee USA, 2000: 24–31.

    Google Scholar 

  76. Z. Pater, A. Gontarz, W. Weroñski. New Method of Thread Rolling [J]. Journal of Materials Processing Technology, 2004, 153–154: 722–728.

    Google Scholar 

  77. Cui Changhua. Thread Rolling Process [M]. Beijing: China Machine Press, 1978.

    Google Scholar 

  78. Ji Zhixiao, Zhang Rongzhen, Chen Jingtao, Liu Wentian. New Thread Processing Technology [M]. Beijing: The Publishing House of Ordnance Industry, 1990.

    Google Scholar 

  79. Round up: Thread Rolling Machine [J]. Fasterner Technology International, 2001, 6: 55–60.

    Google Scholar 

  80. Department of Engineering and Materials, National Natural Science Foundation of China. Development Strategy Report of Mechanical Engineering (2011–2015) [M]. Beijing: Science Press, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianli Song .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 National Defense Industry Press and Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Song, J., Liu, Z., Li, Y. (2017). General Introduction. In: Cold Rolling Precision Forming of Shaft Parts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54048-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54048-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54046-6

  • Online ISBN: 978-3-662-54048-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics