Advertisement

Bioreaktoren

  • Horst Chmiel
  • Dirk Weuster-Botz
Chapter

Zusammenfassung

Unter einem Bioreaktor wird ein Apparat verstanden, in dem unter Mitwirkung von Biokatalysatoren Stoffumwandlungen mit Enzymen, Mikroorganismen oder Zellen stattfinden. Zum Homogenisieren, Suspendieren und Dispergieren müssen fluide Phasen im Bioreaktor transportiert und intensiv miteinander in Kontakt gebracht werden. Hierzu ist Energie erforderlich. Daher ist es konsequent, die vielfältigen Bauformen von Bioreaktoren nach Art des Energieeintrags zu klassifizieren. In diesem Kapitel werden die entsprechenden Bioreaktorklassen sowie geschüttelte Bioreaktoren jeweils getrennt voneinander behandelt, die wesentlichen Eigenschaften im Hinblick auf die Grundaufgaben beschrieben und die Vorgehensweisen zur Maßstabsvergrößerung von Bioprozessen mit den jeweiligen Bioreaktoren erläutert.

Literatur

  1. [1]
    Aboka FO, Yang H, de Jonge LP, van Winden WA, van Gulik WM, Oudshorn A Heijnen JJ (2006) Characterization of an experimental miniature bioreactor for cellular perturbation studies. Biotechnol Bioeng 95:1032–1042PubMedGoogle Scholar
  2. [2]
    Amanullah A, Hjorth SA, Nienow AW (1998) A new mathematical model to predict cavern diameters in highly shear thinning, power law liquids using axial flow impellers. Chem Eng Sci 53:455–469Google Scholar
  3. [3]
    Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7:157–162PubMedGoogle Scholar
  4. [4]
    Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17:187–194Google Scholar
  5. [5]
    Badugu R, Kostov Y, Rao G, Tolosa L (2008) Development and application of an excitation ratiometric optical pH sensor for bioprocess monitoring. Biotechnol Prog 24:1393–1401PubMedGoogle Scholar
  6. [6]
    Bähr C, Leuchtle B, Lehmann C, Becker J, Jeude M, Peinemann F, Arbter R, Büchs J (2012) Dialysis shake flask for effective screening in fed-batch mode. Biochem Eng J 69:182–195Google Scholar
  7. [7]
    Barrett TA, Wu A, Zhang H, Levy MS, Lye GJ (2010) Microwell engineering characterization for mammalian cell culture process development. Biotechnol Bioeng 105:260–275PubMedGoogle Scholar
  8. [8]
    Beirat Algenbiotechnologie (2016) Mikroalgen-Biotechnologie – Gegenwärtiger Stand, Herausforderungen, Ziele. Dechema ,Frankfurt am Main.Google Scholar
  9. [9]
    Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Fact 5:21PubMedPubMedCentralGoogle Scholar
  10. [10]
    Blanch HW, Bhavaraju SM (1976) Non-Newtonian fermentation broths: rheology and mass transfer. Biotechnol Bioeng 18 (6):745–790PubMedGoogle Scholar
  11. [11]
    Blombach B, Takors R (2015) CO2 – intrinsic product, essential substrate and regulatory trigger of microbial and mammalian production processes. Front Bioeng Biotechnol 3:108.  https://doi.org/10.3389/fbioe.2015.00108 CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Borowitzka MA, Moheimani NR (2013) Algae for Biofuels and Energy. Springer, LondonGoogle Scholar
  13. [13]
    Brüning S, Weuster-Botz D (2014) CFD analysis of interphase mass transfer and energy dissipation in a milliliter-scale stirred-tank reactor for filamentous microorganisms. Chem Eng Res Des 92:240–248Google Scholar
  14. [14]
    Buchenauer A, Hofmann MC, Funke M, Büchs J, Mokwa W, Schnakenberg U (2009) Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosens Bioelectron 24:1411–1416PubMedGoogle Scholar
  15. [15]
    Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98PubMedGoogle Scholar
  16. [16]
    Büchs J, Zoels B (2001) Evaluation of maximum to specific power consumption ratio in shaking bioreactors. J Chem Eng Japan 34:647–653Google Scholar
  17. [17]
    Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: I. power consumption measurement in unbaffled flasks at low liquid viscosity. Biotechnol Bioeng 68:589–593PubMedGoogle Scholar
  18. [18]
    Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: II. nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng 68:594–601PubMedGoogle Scholar
  19. [19]
    Büchs J, Lotter S, Milbradt C (2001) Out-of-phase operating conditions, a hitherto unknown phenomenon in shaking bioreactors. Biochem Eng J 7:135–141PubMedGoogle Scholar
  20. [20]
    Büchs J, Maier U, Lotter S, Peter CP (2007) Calculating liquid distribution in shake flasks on rotary shakers at waterlike viscosities. Biochem Eng J 34:200–208Google Scholar
  21. [21]
    Buchholz J, Graf M, Freund A, Busche J, Kalinowski J, Blombach B, Takors R (2014) CO2/HCO3 perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(29):8563–8572PubMedGoogle Scholar
  22. [22]
    Buziol S, Bashir I, Baumeister A, Claassen W, Noisommitt-Rizzi Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped flow sampling technique for measurements of metabolite dynamics on subsecond time scale. Biotechnol. Bioeng 80:632–636PubMedGoogle Scholar
  23. [23]
    Carstensen F, Apel A, Wessling M (2012) In situ product recovery: Submerged membranes versus externals loop membranes. J Membr Sci 394:1–36Google Scholar
  24. [24]
    Chisti Y, Moo-Young M (1989) On the calculation of shear rate and apparent viscosity in airlift and bubble column bioreactors. Biotechnol Bioeng 34:1391–1392PubMedGoogle Scholar
  25. [25]
    Chu, (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187PubMedGoogle Scholar
  26. [26]
    Daub A, Böhm M, Delueg S, Büchs J (2013) Measurement of maximum stable drop size in aerated dilute liquid–liquid dispersions in stirred tanks. Chem Eng Sci 104:147–155Google Scholar
  27. [27]
    Daub A, Böhm M, Delueg S, Mühlmann M, Schneider G, Büchs J (2014) Maximum stable drop size measurements indicate turbulence attenuation by aeration in a 3m3 aerated stirred tank. Biochem Eng J 86:24–32Google Scholar
  28. [28]
    Deckwer W-D (1985) Reaktionstechnik in Blasensäulen. Salle-Sauerländer, FrankfurtGoogle Scholar
  29. [29]
    Delhomme C, Goh S, Kühn F, Weuster-Botz D (2012) Esterification of bio-based succinic acid in biphasic systems: Comparison of chemical and biological catalysts. J Mol Cat B Enz 80:39–47Google Scholar
  30. [30]
    Dennewald D, Hortsch R, Weuster-Botz D (2012) Evaluation of parallel millilitre-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids. J Biotechnol 157:253–257PubMedGoogle Scholar
  31. [31]
    Doig SD, Pickering SCR, Lye GJ, Baganz F (2005) Modelling surface aeration rates in shaken microtitre plates using dimensionless groups. Chem Eng Sci 60:2741–2750Google Scholar
  32. [32]
    Duetz W, Witholt B (2004) Oxygen transfer by orbital shaking of square vessels and deepwell microtiter plates of various dimensions. Biochem Eng J 17:181–185Google Scholar
  33. [33]
    Eibl, R, Eibl, D (2015) „Single-Use (disposable)-Systeme in biopharmazuetischen Prozessen: Quo vadis? https://www.analytik-news.de/Fachartikel/Volltext/achema16.pdf. Zugegriffen: 26. Sept. 2017
  34. [34]
    El Massaoud, M, Spelthahn J, Drysch A, de Graaf AA, Takors R (2003) Production process monitoring by serial mapping of microbial carbon flux distributions using a novel sensor reactor approach: part I: sensor reactor system. Metab Eng 5:86–95Google Scholar
  35. [35]
    Einsele A (1978) Scaling-up bioreactors. Process Biochem 7:13–14Google Scholar
  36. [36]
    Ekato GmbH (Hrsg.) (2012) The book. Handbuch der Rührtechnik, SchopfheimGoogle Scholar
  37. [37]
    Faust G, Janzen N, Bendig C, Römer L, Kaufmann K, Weuster-Botz D (2014) Feeding strategies enhance high cell density cultivation and protein expression in milliliter-scale bioreactors. Biotechnol J 9:1293–1303PubMedGoogle Scholar
  38. [38]
    Fernandes P, Cabral J (2006) Microlitre/millilitre shaken bioreactors in fermentative and biotransformation processes–a review. Biocatal Biotransfor 24:237–252Google Scholar
  39. [39]
    Flitsch D, Ladner T, Lukacs M, Büchs J (2016) Easy to use and reliable technique for online dissolved oxygen tension measurement in shake flasks using infrared fluorescent oxygen-sensitive nanoparticles. Microb Cell Fact 15:45PubMedPubMedCentralGoogle Scholar
  40. [40]
    Funke M, Diederichs S, Kensy F, Müller C, Büchs J (2009) The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol Bioeng 103:1118–1128PubMedGoogle Scholar
  41. [41]
    Funke M, Buchenauer A, Mokwa W, Kluge S, Hein L, Müller C, Kensy F, Büchs J (2010) Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb Cell Fact 9:86PubMedPubMedCentralGoogle Scholar
  42. [42]
    Garcia-Ochoa F, Gomez E (2009) Bioreactor-scale-up and oxygen transfer in microbial processes: an overview. Biotechnol Adv 27:153–176PubMedGoogle Scholar
  43. [43]
    Geisler RK (1991) Fluiddynamik und Leistungseintrag in turbulent gerührten Suspensionen. Dissertation TU, MünchenGoogle Scholar
  44. [44]
    Giese H, Azizan A, Kümmel A, Liao A, Peter CP, Fonseca JA, Hermann R, Duarte TM, Büchs J (2014) Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity. Biotechnol Bioeng 111:295–308PubMedGoogle Scholar
  45. [45]
    Giese H, Klöckner W, Peña C, Galindo E, Lotter S, Wetzel K, Meissner L, Peter CP, Büchs J (2014) Effective shear rates in shake flasks. Chem Eng Sci 118:102–113Google Scholar
  46. [46]
    Green H, Rheinwald JG (1975) Method of controllably releasing glucose to a cell culture medium. US Patent 3(926):723AGoogle Scholar
  47. [47]
    Grünberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Weichert W, Kohlheyer D (2012) A disposable picoliter bioreactor for cultivation and investigation of industrially relevant bacteria on single cell level. Lab Chip 12:2060–2068PubMedGoogle Scholar
  48. [48]
    Gupta A, Rao G (2003) A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84:351–358PubMedGoogle Scholar
  49. [49]
    Hansen, S, Kensy, F, Käser, A, Büchs, J (2011) Potential errors in conventional DOT measurement techniques in shake flasks and verification using a rotating flexitube optical sensor. BMC Biotechnol 11:49PubMedPubMedCentralGoogle Scholar
  50. [50]
    Hansen S, Hariskos I, Luchterhand B, Büchs J (2012) Development of a modified respiration activity monitoring system for accurate and highly resolved measurement of respiration activity in shake flask fermentations. J Biol Eng 6:11PubMedPubMedCentralGoogle Scholar
  51. [51]
    Henzler, H-J (1978) Untersuchungen zum Homogenisieren von Flüssigkeiten und Gasen, VDI-Forschungsheft 587. VDI-Verlag, DüsseldorfGoogle Scholar
  52. [52]
    Henzler H-J (1982) Verfahrenstechnische Auslegungsgrundlagen für Rührbehälter als Fermenter. Chem Ing Tech 5:461–476Google Scholar
  53. [53]
    Henzler H.J (2000) Particle stress in bioreactors. Adv Biochem Eng Biotechnol 67:35–82PubMedGoogle Scholar
  54. [54]
    Henzler HJ (2007) Auslegung von Rührfermentern – Berücksichtigung der nicht- Newton'schen Eigenschaften von Fermentationslösungen. Chem Ing Tech 79(7):957–965Google Scholar
  55. [55]
    Henzler H-J, Biedermann A (1996) Modelluntersuchungen zur Partikelbeanspruchung in Reaktoren. Chem Ing Tech 68:154Google Scholar
  56. [56]
    Henzler HJ, Kauling J (1985) Scale-up of mass transfer in highly viscous liquids. Deutsche Vereinigung für Chemie- und Verfahrenstechnik, (Hrsg) Papers presented at the Fifth European Conference on mixing held at Würzburg/Germany. BHRA, Cranfield,S 303–312Google Scholar
  57. [57]
    Henzler H, Schedel M (1999) Suitability of the shaking flask for oxygen supply to microbiological cultures. Bioprocess Eng 7:123–131Google Scholar
  58. [58]
    Hermann R, Walther N, Maier U, Büchs J (2001) Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation. Biotechnol Bioeng 74:355–363PubMedGoogle Scholar
  59. [59]
    Hermann R, Lehmann M, Büchs J (2003) Characterization of gas-liquid mass transfer phenomena in microtiter plates. Biotechnol Bioeng 81:178–186PubMedGoogle Scholar
  60. [60]
    Hewitt CJ, Nienow AW, (2007) The scale-up of microbial batch and fed-batch fermentation processes. Adv Appl Mirobiol 62:105–135Google Scholar
  61. [61]
    Hiller J, Franco-Lara E, Papaioannou V, Weuster-Botz D (2007) Fast sampling and quenching procedures for microbial metabolic profiling. Biotechnol Lett 29(8):1161–1167PubMedGoogle Scholar
  62. [62]
    Himmelsbach W, Houlton D, Ortlieb D, Lovallo M (2006) New advances in agitation technology for exothermic reactions in very large reactors. Chem Eng Sci 61:3044–3052Google Scholar
  63. [63]
    Himmelsbach W, Krebs R (2014) Betriebssicherheit von Rührwerksanlagen. Chem Ing Tech 86:1–16Google Scholar
  64. [64]
    Höfel T, Wittmann E, Reinecke L, Weuster-Botz D (2010) Reaction engineering studies for the production of 2-hydroxyisobutyric acid with recombinant Cupriavidus necator H16. Appl Microbiol Biotechnol 88: 477–484Google Scholar
  65. [65]
    Höfel T, Faust G, Reinecke L, Rudinger N, Weuster-Botz D (2012) Comparative reaction engineering studies for succinic acid production from sucrose by metabolically engineered Escherichia coli in fed-batch operated stirred tank bioreactors. Biotechnol J 7:1277–1287.Google Scholar
  66. [66]
    Hortsch R, Weuster-Botz D (2010) Power consumption and maximum energy dissipation in a milliliter-scale bioreactor. Biotechnol Prog 26:595–599PubMedGoogle Scholar
  67. [67]
    Hortsch R, Stratmann A, Weuster-Botz D (2010) New millilitre-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms. Biotechnol Bioeng 106 443–451PubMedGoogle Scholar
  68. [68]
    Hortsch R, Krispin H, Weuster-Botz D (2011) Process performance of parallel bioreactors for batch cultivation of Streptomyces tendae. Bioproc Biosys Eng 34:297–304Google Scholar
  69. [69]
    Huber R, Ritter D, Hering, T, Hillmer, A.-K, Kensy, F, Müller, C, Wang, L, Büchs, J (2009) Robo-Lector – a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb Cell Fact 8:42PubMedPubMedCentralGoogle Scholar
  70. [70]
    Huber R, Scheidle M, Dittrich B, Klee D, Büchs J (2009) Equalizing growth in high-throughput small scale cultivations via precultures operated in fed-batch mode. Biotechnol Bioeng 103:1095–1102PubMedGoogle Scholar
  71. [71]
    Idelchik IE (2008) Handbook of hydraulic resistance. Jaico Publishing House, MumbaiGoogle Scholar
  72. [72]
    Jeude M, Dittrich B, Niederschulte H, Anderlei T, Knocke C, Klee D, Büchs J (2006) Fed-batch mode in shake flasks by slow-release technique. Biotechnol Bioeng 95:433–445PubMedGoogle Scholar
  73. [73]
    Junker BH (2004) Scale-up Methodologies for Escherichia coli and Yeast Fermentation Process. J Biosci Bioeng 97(6):347–364PubMedGoogle Scholar
  74. [74]
    Junne S, Klinger A, Kabisch J, Schweder T, Neubauer PA (2011) Two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: Impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol J 6(8):1009–1017PubMedGoogle Scholar
  75. [75]
    Kemblowski, Z, Kristiansen, B (1986) Rheometry of fermentation liquids. Biotechnol Bioeng 28:1474–1483PubMedGoogle Scholar
  76. [76]
    Kensy F, Engelbrecht C, Büchs J (2009) Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations. Microb Cell Fact 8:68PubMedPubMedCentralGoogle Scholar
  77. [77]
    Kensy F, Zang E, Faulhammer C, Tan R.-K, Büchs J (2009) Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact 8:31PubMedPubMedCentralGoogle Scholar
  78. [78]
    Kensy F, Zimmermann HF, Knabben I, Anderlei T, Trauthwein H, Dingerdissen U, Büchs J (2005) Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth. Biotechnol Bioeng 89:698–708PubMedGoogle Scholar
  79. [79]
    Kermis HR, Kostov Y, Harms P, Rao G (2002) Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application. Biotechnol Prog 18:1047–53PubMedGoogle Scholar
  80. [80]
    Kirk TV, Szita N (2013) Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 110:1005–1019PubMedPubMedCentralGoogle Scholar
  81. [81]
    Klöckner W, Büchs J (2011) Shake-Flask Bioreactors 2:213–226Google Scholar
  82. [82]
    Klöckner W, Büchs J (2012) Advances in shaking technologies. Trends Biotechnol 30:307–314PubMedGoogle Scholar
  83. [83]
    Klöckner W, Gacem R, Anderlei T, Raven N, Schillberg S, Lattermann C, Büchs J (2013) Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale. J Biol Eng 7:28PubMedPubMedCentralGoogle Scholar
  84. [84]
    Klöckner W, Tissot S, Wurm F, Büchs J (2012) Power input correlation to characterize the hydrodynamics of cylindrical orbitally shaken bioreactors. Biochem Eng J 65:63–69Google Scholar
  85. [85]
    Klöckner W, Diederichs S, Büchs J (2013) Orbitally Shaken Single-Use Bioreactors. Adv Biochem Eng Biotechnol 123:45–60Google Scholar
  86. [86]
    Knorr, B, Schlieker, H, Hohmann, H.-P, Weuster-Botz, D (2007) Scale-down and parallel operation of the riboflavin production process with Bacillus subtilis. Biochem Eng J 33:263–274Google Scholar
  87. [87]
    Kottmeier K, Müller C, Huber R, Büchs J (2010) Increased product formation induced by a directed secondary substrate limitation in a batch Hansenula polymorpha culture. Appl Microbiol Biotechnol 86:93–101PubMedGoogle Scholar
  88. [88]
    Kraume M (2012) Transportvorgänge in der Verfahrenstechnik. Springer, BerlinGoogle Scholar
  89. [89]
    Kresta SM, Wood PE (1993) The flow field produced by apitched blade turbine characterization of the turbulence and estimation of the dissipation rate. Chem Eng Sci 48:1761–1774Google Scholar
  90. [90]
    Kunze M, Roth S, Gartz E, Büchs J (2014) Pitfalls in optical on-line monitoring for high-throughput screening of microbial systems. Microb Cell Fact 13:53PubMedPubMedCentralGoogle Scholar
  91. [91]
    Kusterer, A, Krause, C, Kaufmann, K, Arnold, M, Weuster-Botz, D (2008) Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations. Bioproc Biosys Eng 31:207–215Google Scholar
  92. [92]
    Ladner T, Flitsch D, Schlepütz T, Büchs J (2015) Online monitoring of dissolved oxygen tension in microtiter plates based on infrared fluorescent oxygen-sensitive nanoparticles. Microb Cell Fact 14:161PubMedPubMedCentralGoogle Scholar
  93. [93]
    Lange HC, Eman M, van Zuijlen D, Visser D, van Dam JC, Framk J, de Mattos MJT, Heijnen JJ (2001) Improved rapid sampling for the in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415PubMedGoogle Scholar
  94. [94]
    Lapin A, Müller D, Reuss M (2004) Dynamic Behavior of Microbial Populations in Stirred Bioreactors Simulated with Euler-Lagrange Methods: Travelling along the Lifeline of Single Cells. Ind Eng Chem Res 43:4647–4657Google Scholar
  95. [95]
    Lapin A, Schmid J, Reuss M (2006) Modeling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor – A structured – segregated approach. Chem Eng Sci 61:4783–4797Google Scholar
  96. [96]
    Lara AR, Galindo E, Ramirez OT, Palomares LA (2006) Living with heterogeneities in bioreactors, Molecular Biotechnol 34:355–381Google Scholar
  97. [97]
    Lattermann C, Büchs J (2015) Microscale and miniscale fermentation and screening. Curr Opin Biotechnol 35:1–6PubMedGoogle Scholar
  98. [98]
    Lattermann C, Funke M, Hansen S, Diederichs S, Büchs J (2014) Cross-section perimeter is a suitable parameter to describe the effects of different baffle geometries in shaken microtiter plates. J Biol Eng 8:18PubMedPubMedCentralGoogle Scholar
  99. [99]
    Lemoine A, Maya Martίnez-Iturralde N, Spann R, Neubauer P, Junne S (2015) Response of Corynebacterium glutamicum exposed to oscillating cultivation conditions in a two- and a novel three-compartment scale-down bioreactor. Biotechnol Bioeng 1220–1231PubMedGoogle Scholar
  100. [100]
    Li C, Xia JY, Chu J, Wang YH, Zhuang YP, Zhang SL (2013) CFD analysis of the turbulent flow in baffled shake flasks. Biochem Eng J 70:140–150Google Scholar
  101. [101]
    Liepe F, Meusel W, Möckel HO, Platzer B, Weißgärber H (1988) Stoffvereinigung in Fluiden Phasen. Verfahrenstechnische Berechnungsmethoden. Teil 4. VCH, WeinheimGoogle Scholar
  102. [102]
    Linek V, Kordač M, Moucha T (2006) Evaluation of the optical sulfite oxidation method for the determination of the interfacial mass transfer area in small-scale bioreactors. Biochem Eng J 27:264–268Google Scholar
  103. [103]
    Liu CM, Hong LN (2001) Development of a shaking bioreactor system for animal cell cultures. Biochem Eng J 7:121–125PubMedGoogle Scholar
  104. [104]
    Losen M, Frölich B, Pohl M, Büchs J (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog 20:1062–1068PubMedGoogle Scholar
  105. [105]
    Lotter S, Büchs J (2004) Utilization of specific power input measurements for optimization of culture conditions in shaking flasks. Biochem Eng J 17:195–203Google Scholar
  106. [106]
    Maier U, Büchs J (2001) Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem Eng J 7:99–106PubMedGoogle Scholar
  107. [107]
    Mauch K, Vaseghi S, Reuss M (2000) Quantitative analysis of Metabolic and Signalling Pathways in Saccharomyces cerevisiae, In: Schügerl K, Bellgardt KH (Hrsg) Bioreaction engineering. Springer, Heidelberg, 435–477Google Scholar
  108. [108]
    McDaniel LE, Bailey EG, Zimmerli A (1965) Effect of oxygen supply rates on growth of Escherichia coli. Appl Microbiol 13:109–14PubMedPubMedCentralGoogle Scholar
  109. [109]
    Mehmood N, Olmos E, Marchal P, Goergen JL, Delaunay S (2010) Relation between pristinamycins production by Streptomyces pristinaespiralis, power dissipation and volumetric gas-liquid mass transfer coefficient, kLa. Process Biochem 45:1779–1786Google Scholar
  110. [110]
    Meier K, Klöckner W, Bonhage B, Antonov E, Regestein L, Büchs J (2016) Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media. Biochem Eng J 109:228–235Google Scholar
  111. [111]
    Mersmann A (1986) Stoffübertragung. Springer, BerlinGoogle Scholar
  112. [112]
    Mersmann A, Einenkel W-D, Käppel M (1975) Auslegung und Maßstabsvergrößerung von Rührapparaten. Chem Ing Tech 47:953Google Scholar
  113. [113]
    Metzner AB, Otto RE (1957) Agitation of non-Newtonian fluids. AIChE J 3 (3):3–10Google Scholar
  114. [114]
    Moor D, Robsen GD, Trinci ARJ (2011) The QuornTM fermentation and evolution in fermenters. In: Guidebook to fungi. Cambridge Unversity PressGoogle Scholar
  115. [115]
    Mrotzek C, Anderlei T, Henzler HJ, Büchs J (2001) Mass transfer resistance of sterile plugs in shaking bioreactors. Biochem Eng J 7:107–112PubMedGoogle Scholar
  116. [116]
    Muller N, Girard P, Hacker DL, Jordan M, Wurm FM (2005) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89:400–406PubMedGoogle Scholar
  117. [117]
    Nikakhtari H, Hill GA (2006) Closure effects on oxygen transfer and aerobic growth in shake flasks. Biotechnol Bioeng 95:15–21PubMedGoogle Scholar
  118. [118]
    Noorman H (2011) An industrial perspective on bioreactor scale-down: What can we learn from combined large-scale bioprocess and model fluid studies. Biotechnol J 6(8):934–943PubMedGoogle Scholar
  119. [119]
    Oosterhuis NMG, Kossen NWF (1983) Dissolved oxygen concentration profiles in a production-scale bioreactor. Biotechnol Bioeng 16:546–550Google Scholar
  120. [120]
    Ottow W, Kümmel A, Buchs J (2004) Shaking flask: flow simulation and validation. Conference on Transport Phenomena with Moving Boundaries, Berlin, Germany, October 9–10 2004Google Scholar
  121. [121]
    Panula-Perälä J, Siurkus J, Vasala A, Wilmanowski R, Casteleijn MG, Neubauer P (2008) Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks. Microb Cell Fact 7:31PubMedPubMedCentralGoogle Scholar
  122. [122]
    Paschold H, Weuster-Botz D, Schäfe, U, Boos W (1998) Verfahren zur schnellen Probennahme biologischer Proben. German Patent DE 19705289Google Scholar
  123. [123]
    Paul E, Atiemo-Obeng V, Kresta S (2004) Handbook of industrial Mixing. Wiley-Interscience, New YorkGoogle Scholar
  124. [124]
    Peter CP, Lotter S, Maier U, Büchs J (2004) Impact of out-of-phase conditions on screening results in shaking flask experiments. Biochem Eng J 17:205–215Google Scholar
  125. [125]
    Peter CP, Suzuki Y, Büchs J (2006) Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93:1164–1176PubMedGoogle Scholar
  126. [126]
    Pierce LN, Shabram PW (2004) Scalability of a disposable bioreactor from 12L–500L run in perfusion mode with a CHO-based cell line: a tech review. BioProcessing J 3(4):1–6Google Scholar
  127. [127]
    Poschenrieder S, Wagner S, Castiglione K (2016) Efficient production of uniform nanometer-sized polymer vesicles in stirred-tank reactors. J Appl Polym Sci 133:43274Google Scholar
  128. [128]
    Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Engineering in life sciences. 9(3):145–177Google Scholar
  129. [129]
    Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89:512–523PubMedGoogle Scholar
  130. [130]
    Richardson JF, Zaki WN (1954) The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem Eng Sci 3:65–73Google Scholar
  131. [131]
    Riedlberger P, Weuster-Botz D (2012) New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis. Bioresource Technol 106:138–146Google Scholar
  132. [132]
    Riedlberger P, Brüning S, Weuster-Botz D (2013) Characterization of stirrers for screening studies of enzymatic biomass hydrolyses on a milliliter-scale. Bioproc Biosys Eng 36:927–935Google Scholar
  133. [133]
    Rischbieter E, Schumpe A (1996) Gas solubilities in aqueous solutions of organic substances. J Chem Eng 41:809–812Google Scholar
  134. [134]
    Rohe P, Venkanna D, Kleine B, Freudl R, Oldiges M (2012) An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Microb Cell Fact 11:144PubMedPubMedCentralGoogle Scholar
  135. [135]
    Samorski M, Müller-Newen G, Büchs J (2005) Quasi-continuous combined scattered light and fluorescence measurements: A novel measurement technique for shaken microtiter plates. Biotechnol Bioeng 92:61–68PubMedGoogle Scholar
  136. [136]
    Schäfer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270:88–96Google Scholar
  137. [137]
    Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22(5):1434–1442PubMedGoogle Scholar
  138. [138]
    Scheidle M, Jeude M, Dittrich B, Denter S, Kensy F, Suckow M, Klee D, Büchs J (2010) High-throughput screening of Hansenula polymorpha clones in the batch compared with the controlled-release fed-batch mode on a small scale. FEMS Yeast Res 10:83–92PubMedGoogle Scholar
  139. [139]
    Scheidle M, Dittrich B, Klinger J, Ikeda H, Klee D, Büchs J (2011) Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol 11:25PubMedPubMedCentralGoogle Scholar
  140. [140]
    Schilling BM, Pfefferle W, Bachmann B, Leuchtenberger W, Deckwer W-D (1999) A special reactor design for investigations of mixing time effects in a scaled-down industrial L-lysine fed-batch fermentation process. 64(5):599–606Google Scholar
  141. [141]
    Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  142. [142]
    Schlüter S (1992) Modellierung und Simulation von Blasensäulen. Dissertation, Universität DortmundGoogle Scholar
  143. [143]
    Schmalzriedt S, Jenne M, Mauch K, Reuss M (2003) Integration of physiology and fluid dynamics. Adv Biochem Eng 80:19–68Google Scholar
  144. [144]
    Schmideder A, Severin TS, Cremer J, Weuster-Botz D (2015) A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors. J Biotechnol 210:19–24PubMedGoogle Scholar
  145. [145]
    Schmideder A, Hensler S, Lang M, Stratmann A, Giesecke U, Weuster-Botz D (2016) High-cell-density cultivation and recombinant protein production with Komagataella pastoris in stirred-tank bioreactors from milliliter to cubic meter scale. Proc Biochem 51:177–184Google Scholar
  146. [146]
    Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435PubMedGoogle Scholar
  147. [147]
    Schmidt M, Weuster-Botz D (2012) Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum. Biotechnol J 7:656–661PubMedGoogle Scholar
  148. [148]
    Schubert H (2012) Handbuch der Mechanischen Verfahrenstechnik. John Wiley&Sons, New YorkGoogle Scholar
  149. [149]
    Seletzky JM, Noak U, Fricke J, Welk E, Eberhard W, Knocke C, Büchs J (2007) Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH. Biotechnol Bioeng 98:800–811PubMedGoogle Scholar
  150. [150]
    Smelko JP, Wiltberger KR, Hickman EF, Morris BJ, Blackburn TJ, Ryll T (2011) Performance of high intensity fed-batch mammalian cell cultures in disposable bioreactor systems: Biotechnol Prog 27(5):1358–1364PubMedGoogle Scholar
  151. [151]
    Stadtaus M, Kastner B, Weiß H-J (2007)Numerische Berechnung der Eigenfrequenzen an eingetauchten Behältereinbauten. Chem Ing Tech 79:1089–1095Google Scholar
  152. [152]
    Stadtaus M, Weiss HJ, Himmelsbach W, Smith J (2010) Mechanical design aspects for high-performance agitated reactors. Chem Eng 4:38Google Scholar
  153. [153]
    Stöckmann C, Losen M, Dahlems U, Knocke C, Gellissen G, Büchs J (2003) Effect of oxygen supply on passaging, stabilising and screening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS Yeast Res 4:195–205PubMedGoogle Scholar
  154. [154]
    Strillinger E, Grötzinger SW, Allers T, Groll M, Eppinger J, Weuster-Botz D (2016) Production of halophilic proteins with Haloferax volcanii H1895 in a stirred tank bioreactor. Appl Microbiol Biotechnol 100:1183–1195PubMedGoogle Scholar
  155. [155]
    Suresh S, Srivastava V, Mishra I (2009) Techniques for oxygen transfer measurement in bioreactors: a review. J Chem Technol Biotechnol 84:1091–103Google Scholar
  156. [156]
    Suresh S, Srivastava V.C, Mishra I.M (2009) Critical analysis of engineering aspects of shaken flask bioreactors. Crit Rev Biotechnol 29:255–278PubMedGoogle Scholar
  157. [157]
    Sweere APJ, Mesters JR, Janse L, Luyben KChAM (1988a) Experimental simulation of oxygen profiles and their influence on baker’s yeast production: I. One-fermentor system. Biotechnol Bioeng 31:567–578PubMedGoogle Scholar
  158. [158]
    Sweere APJ, Janse L, Luyben KChAM (1988b) Experimental simulation of oxygen profiles and their influence on baker’s yeast production: II. Two-fermentor system. Biotechnol Bioeng 31:579–586PubMedGoogle Scholar
  159. [159]
    Takors R (2014) Kommentierte Formelsammlung Bioverfahrenstechnik, Springer Spektrum, HeidelbergGoogle Scholar
  160. [160]
    Tan RK, Eberhard W, Büchs J (2011) Measurement and characterization of mixing time in shake flasks. Chem Eng Sci 66:440–447Google Scholar
  161. [161]
    Tissot S, Farhat M, Hacker DL, Anderlei T, Kühner M, Comninellis C, Wurm F (2010) Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors. Biochem Eng J 52:181–186Google Scholar
  162. [162]
    Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31–37PubMedGoogle Scholar
  163. [163]
    Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I experimental observations. Biotechnol Bioeng 55(2):305–316PubMedGoogle Scholar
  164. [164]
    Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162Google Scholar
  165. [165]
    VDI-Wärmeatlas (2006) Berechnungsblätter für den Wärmeübergang, Springer -Vieweg, WiesbadenGoogle Scholar
  166. [166]
    Veljkovic VB, Nikolic S. Lazic ML, Engler CR (1995) Oxygen transfer in flasks shaken on orbital shakers. Hem Ind 49:265–272Google Scholar
  167. [167]
    Vester A, Hans M, Hohmann P, Weuster-Botz D (2009) Discrimination of riboflavin producing Bacillus subtilis strains based on their fed-batch process performances on a millilitre scale. Appl Microbiol Biotechnol 84:71–76PubMedGoogle Scholar
  168. [168]
    Visser D, van Zuylen GA, van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GWK, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the bioscope: a system for continuous-pulse experiments. Biotechnol Bioeng 79:674–681PubMedGoogle Scholar
  169. [169]
    Voit H, Zeppenfeld R, Mersmann A (1987) Calculation of primary bubble volume in gravitational and centrifugal fields. Chem Eng Technol 19:99–103Google Scholar
  170. [170]
    Vrabel P, van der Lans RGJM, van der Schot FN, Luyben KChAM, Xu B, Enfors S-O (2001) CMA: integration o fluid dynamics and microbial kinetics in modeling of large-scale fermentations. Chem Eng J 84:463–474Google Scholar
  171. [171]
    Wandrey G, Bier C, Binder D, Hoffmann K, Jaeger KE, Pietruszka J, Drepper T, Büchs J (2016) Light-induced gene expression with photocaged IPTG for induction profiling in a high-throughput screening system. Microb Cell Fact 15:63Google Scholar
  172. [172]
    Weiner M, Tröndle J, Schmideder A, Binder K, Albermann C, Sprenger G.A, Weuster-Botz D (2015) Parallelized small-scale production of uniformly 13C-labeled cell-extract for quantitative metabolome analysis. Anal Biochem 478:134–140PubMedGoogle Scholar
  173. [173]
    Weisenberger S, Schumpe A (1996) Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K. AIChE J 42:298–300Google Scholar
  174. [174]
    Weiss S, John GT, Klimant I, Heinzle E (2002) Modeling of mixing in 96-well microplates observed with fluorescence indicators. Biotechnol Prog 18:821–830PubMedGoogle Scholar
  175. [175]
    Weuster-Botz D (1997) Sampling tube device form monitoring intracellular metabolite dynamics. Anal Biochem 246:225–233PubMedGoogle Scholar
  176. [176]
    Weuster-Botz, D, Altenbach-Rehm, J, Arnold, M (2001) Parallel substrate feeding and pH-control in shaking-flasks. Biochem Eng J 7:163–170PubMedGoogle Scholar
  177. [177]
    Weuster-Botz D, Puskeiler R, Kusterer A, Kaufmann K, John G, Arnold M (2005) Methods and milliliter scale devices for high-throughput bioprocess design. Bioproc Biosys Eng 28:109–119Google Scholar
  178. [178]
    Wiebe MG (2002) Myco-Protein from Fusarium venenatum, a well-established product for human consumption. Appl Microbiol Biotechnol 58:421–427PubMedGoogle Scholar
  179. [179]
    Wilming A, Begemann J, Kuhne S, Regestein L, Bongaerts J, Evers S, Maurer KH, Büchs J (2013) Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations. Biochem Eng J 73:29–37Google Scholar
  180. [180]
    Wewetzer S.J, Kunze M, Ladner T, Luchterhand B, Roth S, Rahmen N, Kloß R, Costa e Silva A, Regestein L, Büchs J (2015) Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors. J Biol Eng 9:9PubMedPubMedCentralGoogle Scholar
  181. [181]
    Zhang H, Williams-Dalson W, Keshavarz-Moore E, Shamlou PA (2005) Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Biotechnol Appl Biochem 41:1–8PubMedGoogle Scholar
  182. [182]
    Zlokarnik M (1999) Rührtechnik. Springer, BerlinGoogle Scholar
  183. [183]
    Zhang H, Lamping SR, Pickering SCR, Lye GJ Shamlou PA (2008) Engineering characterisation of a single well from 24-well and 96-well microtitre plates. Biochem Eng J 40:138–149Google Scholar
  184. [184]
    Zhang X, Stettler M, Sanctis D, Perrone M, Parolini N, Discacciati M, Jesus M, Hacker D, Quarteroni A, Wurm F (2009) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng Biotechnol 123:33–53Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.MünchenDeutschland
  2. 2.Technische Universität MünchenLehrstuhl für BioverfahrenstechnikGarchingDeutschland

Personalised recommendations