Advertisement

Kultivierung von Säugetierzellen

Chapter

Zusammenfassung

Die Kultivierung von Säugetierzellen hat in Verbindung mit der industriellen Anwendung der Gen- und Biotechnik eine enorme medizinische und wirtschaftliche Bedeutung erlangt. Eine stetig steigende Zahl von Proteinen, die in tierischen Zellen exprimiert werden, ist bereits für die Anwendung am Menschen zugelassen bzw. wird für ihre Eignung als Arzneimittel geprüft. Im Jahr 1987 wurde Actilyse® für die Therapie des Herzinfarktes in den Markt eingeführt, als eines der ersten Medikamente dieser Art, das aus Säugetierzellkulturen gewonnen wurde. Seitdem wurden viele weitere Proteine als Medikamente zur Therapie von Krankheiten aus Zellkulturen hergestellt, die inzwischen eine große wirtschaftliche Relevanz erreicht haben.

Literatur

  1. [1]
    Aisen P, Listowsky I (1980) Iron transport and storage proteins. Ann Rev Biochem 49:357–393PubMedCrossRefPubMedCentralGoogle Scholar
  2. [2]
    AMG (Arzneimittelgesetz): Gesetz über den Verkehr mit Arzneimitteln. 11.12.1998 (BGBl. I S. 3586). 14. Artikel 1 Zwölftes ÄndG vom 30.06.2004 (BGBl. I, Nr. 41, S. 2031)Google Scholar
  3. [3]
    Amoils S (2006) Targeted integration. Nat Rev Microbiol 4:87CrossRefGoogle Scholar
  4. [4]
    ArbSchG: Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit (Arbeitsschutzgesetz) vom 7. August 1996 (BGBl. I Nr. 43 vom 20.08.1996, S. 1246) zuletzt geändert am 5. Februar 2009 durch Artikel 15 Abs. 89 des Gesetzes zur Neuordnung und Modernisierung des Bundesdienstrechts (Dienstrechtsneuordnungsgesetz ‒ DNeuG) (BGBl. I Nr. 7 vom 11.02.2009, S. 160)Google Scholar
  5. [5]
    Barnes LM, Bentley CM, Dickson, AJ (2000) Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 32(2):109‒123PubMedPubMedCentralCrossRefGoogle Scholar
  6. [6]
    Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. BioTechnology 10:169–175PubMedPubMedCentralGoogle Scholar
  7. [7]
    Bebbington CR, Hentschel CCG (1987) The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells. In: Glover DM (Hrsg) DNA cloning, Vol. III A Practical Approach, Academic Press, San Diego, S 163–180Google Scholar
  8. [8]
    Berg GJ, Bödecke, BGD (1988) Employing a ceramic matrix for the immobilization of mammalian cells in culture. In: Spier RE, Griffith JB (Hrsg) Animal Cell Biotechnology, Vol. 3, Academic Press, London, S 322–335Google Scholar
  9. [9]
    BetrSichV: Verordnung über Sicherheit und Gesundheitsschutz bei der Bereitstellung von Arbeitsmitteln und deren Benutzung bei der Arbeit, über Sicherheit beim Betrieb überwachungsbedürftiger Anlagen und über die Organisation des betrieblichen Arbeitsschutzes (Betriebssicherheitsverordnung) vom 27. September 2002 (BGBl. I Nr. 70 vom 02.10.2002, S. 3777) zuletzt geändert am 18. Dezember 2008 (BGBl. I Nr. 62 vom 23.12.2008, S. 2768)Google Scholar
  10. [10]
    Bigalke S (2009) Ein Impfstoff für Millionen. Süddeutsche Zeitung vom 29.10.2009. www.sueddeutsche.de/wissen/281/492636/text
  11. [11]
    BImSchG: Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz) in der Fassung der Bekanntmachung vom 26. September 2002 (BGBl. I Nr. 71 vom 04.10.2002, S. 3830) zuletzt geändert am 11. August 2009 (BGBl. I Nr. 53 vom 17.08.2009, S. 2723)Google Scholar
  12. [12]
    Birger Anspach F, Curbelo D, Hartmann R, Garke G, Deckwer WD (1999) Expanded-bed chromatography in primary protein purification. J Chrom A 865:129–144CrossRefGoogle Scholar
  13. [13]
    Blasey HD, Aubry JP, Mazzei GJ, Bernard AR (1996) Large scale transient expression with COS cells. Cytotechnology 18:183–192CrossRefGoogle Scholar
  14. [14]
    Bonarius HPJ, Oezemere A, Timmerarends B, Skrabal P, Tramper J, Schmid G, Heinzle E (2001) Metabolic-flux analysis of continuously cultured hybridoma cells using 13CO2 mass spectrometry in combination with 13C-lactate nuclear magnetic resonance spectroscopy and metabolite balancing. Biotechnol Bioeng 74(6):528‒538PubMedCrossRefPubMedCentralGoogle Scholar
  15. [15]
    Büntemeyer H, Siwiora S, Lehmann J (1997) Inhibitors of cell growth: accumulation and con-centration. In: Carrondo MJT, Griffiths B, Moeira LP (Hrsg) Animal cell technology, Kluwer Academic Publishers, Dordrecht, S 651–655CrossRefGoogle Scholar
  16. [16]
    Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283‒291PubMedCrossRefPubMedCentralGoogle Scholar
  17. [17]
    Carr PA, Church GM (2009) Genome engineering. Nat Biotechnol 27:1151‒1162PubMedCrossRefPubMedCentralGoogle Scholar
  18. [18]
    Carroll D (2014) Genome engineering with targetable nucleases. Ann Rev Biochem 83:409–439PubMedCrossRefPubMedCentralGoogle Scholar
  19. [19]
    Christi Y (1993) Animal cell culture in stirred bioreactors: Observations on scale-up. Bioprocess Eng 9:191–196CrossRefGoogle Scholar
  20. [20]
    Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187PubMedPubMedCentralCrossRefGoogle Scholar
  21. [21]
    Deshpande RR, Heinzle E (2004) On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors. Biotechnol Lett 26:763–767PubMedCrossRefPubMedCentralGoogle Scholar
  22. [22]
    Dick LW , Kakaley JA, Mahon D, Qiu D, Cheng KC (2009) Investigation of proteins and peptides from yeastolate and subsequent impurity testing of drug product. Biotechnol Progr 25(2):570‒577CrossRefGoogle Scholar
  23. [23]
    Dübel S (2007) Handbook of therapeutic antibodies, Kapitel 9. Wiley-VCH, Weinheim, S 224‒231CrossRefGoogle Scholar
  24. [24]
    Dulbecco R, Freeman G (1959) Plaque production by the polyoma virus. Virology 8:396–397PubMedCrossRefPubMedCentralGoogle Scholar
  25. [25]
    Eagle H (1959) Amino acid metabolism in mammalian cell cultures. Science 130:432–437PubMedCrossRefPubMedCentralGoogle Scholar
  26. [26]
    Eagle H (1965) Propagation in a fluid medium of a human epidermoid carcinoma, Strain KB (21811). Proc Soc Exp Biol Med 89:362–364CrossRefGoogle Scholar
  27. [27]
    Edwards CP, Aruffo A (1993) Current applications of COS cell based transient expression systems. Curr Opin Biotechnol 4:558–563PubMedCrossRefPubMedCentralGoogle Scholar
  28. [28]
    Elliott P, Billingham S, Bi J, Zhang H (2013) Quality by design for biopharmaceuticals: a historical review and guide for implementation. Pharm Bioprocess 1(1):105–122CrossRefGoogle Scholar
  29. [29]
    Elmore S (2007) Apoptosis: A review of programmed cell death. Toxicol Pathol 35(4):495‒516PubMedPubMedCentralCrossRefGoogle Scholar
  30. [30]
    EMEA: European Medicines Agency. : EudraLex – Volume 4 – Good Manufacturing Practice (GMP) guidelines. https://ec.europa.eu/health/documents/eudralex/vol-4_en. Zugegriffen: 30. Aug. 2017
  31. [31]
    Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S (2000) Design of experiments. Principles and applications. Umetrics AB, Umea, Schweden, chapters 13–17, 113–211Google Scholar
  32. [32]
    Evans VJ, Bryant JC, Kerr HA, Schilling EI (1964) Chemically defined media for cultivation of long-term cell strains from four mammalian species. Exp Cell Res 36:439–474PubMedCrossRefPubMedCentralGoogle Scholar
  33. [33]
    FDA: U.S. Food and Drug Administration. http://www.fda.gov. Zugegriffen: 29. Aug. 2017
  34. [34]
    FDA: Guidance for industry sterile drug products produced by aseptic processing – current good manufacturing practice, 2–3. September 2004. https://www.fda.gov/downloads/Drugs/Guidances/ucm070342.pdf. Zugegriffen: 30. Aug. 2017
  35. [35]
    Center for Drugs and Biologics and Center for Devices and Radiological Health, Food and Drug Administration (1987) Guideline on general principles of process validation. S 3. Die überarbeitete (Draft) Guideline von November 2008 ist verfügbar unter: https://www.fda.gov/ohrms/dockets/98fr/fda-2008-d-0559-gdl.pdf. Zugegriffen: 29. Aug. 2017. Die Revision 1 (der Guideline von 2008) von Januar 2011 ist verfügbar unter: https://www.fda.gov/downloads/drugs/guidances/ucm070336.pdf. Zugegriffen: 29. Aug. 2017
  36. [36]
    FDA (2004) Pharmaceutical cGMPS for the 21st Century – A Risk-Based Approach. http://www.fda.gov/cder/gmp/gmp2004/GMP_finalreport2004.htm. Zugegriffen: 29. Aug. 2017
  37. [37]
    FDA (2011) Guidance for Industry Process Validation: General Principles and Practices. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070336.pdf. Zugegriffen: 29. Aug. 2017
  38. [38]
    Fike R, Dadey B, Hassett R, Radominski R, Jayme D, Cady D (2001) Advanced granulation technology: An alternative format for serum-free, Chemically defined and protein-free cell culture media. Cytotechnology 36:33–39PubMedPubMedCentralCrossRefGoogle Scholar
  39. [39]
    Fletcher T (2005) Designing culture media for recombinant protein production. BioProcess 3:30–36Google Scholar
  40. [40]
    Franek F, Hohenwarter O, Katinger H (2000) Plant protein hydrolysates: Preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol Progr 16(5):688‒692CrossRefGoogle Scholar
  41. [41]
    GenTG: Gesetz zur Regelung von Fragen der Gentechnik (Gentechnikgesetz) vom 20.06.1990 (BGBl. I/28 1990, S. 1080; BGBl I/16 2008, S. 766)Google Scholar
  42. [42]
    Genzel Y, Reichl U (2009) Continuous cell lines as a production system for influenza vaccines. Exp Rev Vaccines 8 (12):1681‒1692CrossRefGoogle Scholar
  43. [43]
    Gerlach J (1997) Bioreactor for a hybrid liver support. In: Carrondo, MJT, Griffiths B, Moreira LP (Hrsg) Animal cell technology, Kluwer Academic Publishers, Dordrecht, S 543–555.CrossRefGoogle Scholar
  44. [44]
    Gerlach J, Schauwecker HH, Klöppe K, Tauber R, Müller C, Bücherl E (1989) Use of hepatocytes in adhesion and suspension cultures for liver support bioreactors. Int J Artif Org 12:788–793CrossRefGoogle Scholar
  45. [45]
    Girard P, Derouazi M, Baumgartner G, Bourgeois M, Jordan M, Jacko B, Wurm F (2002) 100-liter transient transfection. Cytotechnology 38:15–21PubMedPubMedCentralCrossRefGoogle Scholar
  46. [46]
    Gopinath SCB (2010) Biosensing applications of surface plasmon resonance-based Biacore technology. Sensor Actuator B 150:722–733CrossRefGoogle Scholar
  47. [47]
    Grace TDC (1962) Establishment of four strains of cells from insect tissues grown in vitro. Nature 195:788–789PubMedCrossRefPubMedCentralGoogle Scholar
  48. [48]
    Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74PubMedCrossRefPubMedCentralGoogle Scholar
  49. [49]
    Ham RG (1965) Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc Natl Acad Sci 53:288–293PubMedPubMedCentralCrossRefGoogle Scholar
  50. [50]
    Hang H, Fox MH (2004) Analysis of the mammalian cell cycle by flow cytometry. Methods Mol Biol 241:23‒35PubMedPubMedCentralGoogle Scholar
  51. [51]
    Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77(1):13–22PubMedPubMedCentralCrossRefGoogle Scholar
  52. [52]
    Harrison T, Graham F, Williams J (1977) Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77:319–329PubMedCrossRefPubMedCentralGoogle Scholar
  53. [53]
    Haubitz M, Fliser D, Haller H (2004) Proteomanalyse – eine neue Perspektive für die klinische Diagnostik. Deutsches Ärzteblatt 101(21):1514‒1517Google Scholar
  54. [54]
    Hayflick L (1997) Mortality and immortality at the cellular level. A Rev. Biochem (Moscow) 62:1180–1190Google Scholar
  55. [55]
    Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126‒1136PubMedCrossRefPubMedCentralGoogle Scholar
  56. [56]
    Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490PubMedCrossRefPubMedCentralGoogle Scholar
  57. [57]
    ICH Q7A (2000) Q7A good manufacturing practice guidance for active pharmaceutical ingredients, Abschnitte 4.2, 4.4, 5.2, 7.2, 7.4, 16.1, 17.4. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q7/Step4/Q7_Guideline.pdf. Zugegriffen: 29. Aug. 2017
  58. [58]
    ICH Q7A (2000) Q7A Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients, Abschnitt 18.3. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q7/Step4/Q7_Guideline.pdf. Zugegriffen: 29. Aug. 2017
  59. [59]
    Iscove NN, Melchers F (1978) Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysaccharide-reactive B lymphocytes. J Exp Medicine 147:923–933CrossRefGoogle Scholar
  60. [60]
    Jarvis DL (2003) Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  61. [61]
    Joeris K, Frerichs JG, Konstantinov K, Scheper T (2002) In situ microscopy: Online process monitoring of mammalian cell cultures. Cytotechnology 38:129–134PubMedPubMedCentralCrossRefGoogle Scholar
  62. [62]
    John GT, Goelling D, Klimant I, Schneider H, Heinzle E (2003) pH-Sensing 96-well microtitre plates for the characterization of acid production by dairy starter cultures. J Dairy Res 70:327–333PubMedCrossRefPubMedCentralGoogle Scholar
  63. [63]
    Jones D, Kroos N, Anema R, van Montfort B, Vooys A, van der Kraats S, van der Helm E, Smits S, Schouten J, Brouwer K, Lagerwerf F, van Berkel P, Opstelten DJ, Logtenberg T, Bout A (2003) High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 19(1):163‒168PubMedCrossRefPubMedCentralGoogle Scholar
  64. [64]
    Kalyanpur M (2002) Downstream processing in the biotechnology industry. Mol. Biotechnol. 22:87–98PubMedCrossRefPubMedCentralGoogle Scholar
  65. [65]
    Kaufmann H, Grammatikos S, Hoffmann H, Carius W (2005) Towards mature production platforms for biopharmaceuticals. BioWorld Europe 2‒4Google Scholar
  66. [66]
    Kaufman RJ, Sharp PA (1982) Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene. J Mol Biol 159:601–621PubMedCrossRefPubMedCentralGoogle Scholar
  67. [67]
    Kaufman RJ, Wasley LC, Spiliotes AJ, Gossels SD, Latt SA, Larsen GR, Kay RM (1985) Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol Cell Biol 5:1750–1759PubMedPubMedCentralCrossRefGoogle Scholar
  68. [68]
    Kelly W, Scully J, Zhang D, Feng G, Lavengood M, Condon J, Knighton J, Bhatia R (2014) Understanding and modelling alternating tangential flow filtration for rerfusion cell culture. Biotechnol Prog 30(6):1291–1300PubMedCrossRefPubMedCentralGoogle Scholar
  69. [69]
    Kempken R, Büntemeyer H, Lehmann J (1992) Long term application of medium recycling for economic antibody production. In: Spier RE, Griffiths JB, MacDonald C (Hrsg) Animal cell technology, Butterworth-Heinemann Ltd, Oxford, S 264–267CrossRefGoogle Scholar
  70. [70]
    Kim NS, Kim SJ, Lee GM (1998) Clonal variability within dihydrofolate reductase-mediated gene amplified chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol Bioeng 60:679–688PubMedCrossRefPubMedCentralGoogle Scholar
  71. [71]
    Kirdar AO, Conner JS, Baclaski J, Rathore AS (2007) Application of multivariate analysis toward biotech processes: case study of a cell-culture unit operation. Biotechnol Prog 23:61‒67PubMedCrossRefPubMedCentralGoogle Scholar
  72. [72]
    Kleinig H, Maier U (1999) Zellbiologie, 4. Aufl. Fischer, StuttgartGoogle Scholar
  73. [73]
    Koller MR, Palson BO (1993) Tissue engineering: Reconstitution of human hematopoesis ex vivo. Biotechnol Bioeng 42:909–930PubMedCrossRefPubMedCentralGoogle Scholar
  74. [74]
    Li F, Hashimura Y, Pendleton R, Harms J, Collins E, Lee B (2006) A systematic approach for scale-down model development and characterization of commercial cell culture processes. Biotechnol Prog 22:696‒703PubMedCrossRefPubMedCentralGoogle Scholar
  75. [75]
    Lindl T (2002) Zell- und Gewebekultur, 5. Aufl. Spektrum, HeidelbergGoogle Scholar
  76. [76]
    Lipps HJ, Jenke ACW, Nehlsen Scinteie KM, Stehle IM, Bode J (2003) Chromosome-based vectors for gene therapy. Gene 304:23‒33PubMedCrossRefPubMedCentralGoogle Scholar
  77. [77]
    Löser P, Schirm J, Guhr A, Wobus AM, Kurtz A (2010) Human embryonic stem cell lines and their use in international research. Stem Cells 28:240‒246PubMedPubMedCentralGoogle Scholar
  78. [78]
    Macpherson I, Stoker M (1962) Polyoma transformation of hamster cell clones – an investigation of genetic factors affecting cell competence. Virology 16:147–151PubMedCrossRefPubMedCentralGoogle Scholar
  79. [79]
    Marks DM (2003) Equipment design considerations for large scale cell culture. Cytotechnology 42:21–33PubMedPubMedCentralCrossRefGoogle Scholar
  80. [80]
    Maschmeyer I, Hasenberg T, Jaenicke A, Lindner M, Lorenz AK, Zech J, Garbe L-A, Sonntag F, Hayden P, Ayehunie S, Lauster R, Marx U, Materne E-M (2015) Chip-based human liver–intestine and liver–skin co-cultures – A first step toward systemic repeated dose substance testing in vitro. Eur J Pharm Biopharm 95:77–87PubMedCrossRefPubMedCentralGoogle Scholar
  81. [81]
    Michal G (1999) Biochemical pathways: Biochemie-Atlas. Spektrum, HeidelbergGoogle Scholar
  82. [82]
    Moore GE, Gerner RE, Franklin HA (1967) Culture of normal human leukocytes. J Am MedicalAssoc 199:87–92Google Scholar
  83. [83]
    Nehlsen K, Schucht R, Gama-Norton L, Kromer W, Baer A, Cayli A, Hauser H, Wirth D (2009) Recombinant protein expression by targeting pre-selected chromosomal loci. BioMed Central Biotechnol 9(1):100Google Scholar
  84. [84]
    Nelson LS (1984) The Shewhart control charts – tests for special causes. J Quality Technol 16(4):237‒239CrossRefGoogle Scholar
  85. [85]
    Nelson LS (1985) Interpreting shewhart X control charts. J Quality Technol 17(2):114‒116CrossRefGoogle Scholar
  86. [86]
    Oezemere A, Heinzle E (2001) Measurement of oxygen uptake and carbon dioxide production rates of mammalian cells using membrane mass spectrometry. Cytotechnology 37:153‒162CrossRefGoogle Scholar
  87. [87]
    Osterholm MT (2005) Preparing for the next pandemic. N Engl J Med 352(18):1839‒1842PubMedCrossRefPubMedCentralGoogle Scholar
  88. [88]
    Owen JS, McIntyre N, Gillett MPT (1984) Lipoproteins, cell membranes and cellular functions. Trends Biochem Sci 9:238–242CrossRefGoogle Scholar
  89. [89]
    Pallavicini MG, DeTeresa PS, Rosette C, Gray JW, Wurm FM (1990) Effects of methotrexate on transfected DNA stability in mammalian cells. Mol Cell Biol 10:401–404PubMedPubMedCentralCrossRefGoogle Scholar
  90. [90]
    Parenteral Drug Association (2005) Process Validation of Protein Manufacturing. PDA (Parenteral Drug Association) Technical Report No. 42, Supplement Vol. 59, No. S-4, September/Oktober 2005Google Scholar
  91. [91]
    Patterson SD, Aebersold RH (2003) Proteomics: The first decade and beyond. Nat. Genet 33:311‒323PubMedCrossRefPubMedCentralGoogle Scholar
  92. [92]
    Paul M, Ma J (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58(1):58–67CrossRefGoogle Scholar
  93. [93]
    Pearn WL, Kotz S (2006) Encyclopedia and Handbook of Process Capability Indices, Series on Quality, Reliability and Engineering Statistics, Vol. 12, Chapter 3. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  94. [94]
    Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, Borzilleri RM (2014) Antibody–drug conjugates: current status and future directions. Drug Discov Today 19(7):869–881PubMedCrossRefPubMedCentralGoogle Scholar
  95. [95]
    Philippidis A (2015) The Top 25 Best-Selling Drugs of 2014. Genetic Engineering & Biotechnology News, 23. Februar.2015Google Scholar
  96. [96]
    PharmBetrV: Betriebsverordnung für pharmazeutische Unternehmer vom 08.03.1985 (BGBl. I, S. 546), geändert durch 9. Artikel 1 der Dritten Verordnung zur Änderung der Betriebsverordnung für pharmazeutische Unternehmer vom 10.08.2004 (BGBL, S. 2155)Google Scholar
  97. [97]
    Pohlscheidt M, Charaniya S, Kulenovic F, Corrales M, Shiratori M, Bourret J, Meier S, Fallon E, Kiss R (2014) Implementing high-temperature short-time media treatment in commercial-scale cell culture manufacturing processes. Appl Micorbiol Biotechnol 98:2965–2971CrossRefGoogle Scholar
  98. [98]
    Pollock J, Ho S, Farid S (2013) Fed-Batch and perfusion culture processes: Economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110(1):206–219PubMedCrossRefPubMedCentralGoogle Scholar
  99. [99]
    Purtle DR, Festen RM, Etchberger KJ, Caffrey MB, Doak JA (2003) Validated gamma radiated serum products. JRH Biosciences Research Report R013:1–4 (jrhbio.com)Google Scholar
  100. [100]
    Radominski R, Hassett R, Dadey B, Fike R, Cady D, Jayme D (2001) Production-scale qualification of a novel cell culture medium format. BioPharm Int 14:34–39Google Scholar
  101. [101]
    Rathore A, Krishnan R, Tozer S, Smiley D, Rausch S, Seeley J (2005) Scaling down of biopharmaceutical unit operations ‒ part I: Fermentation. BioPharm Int 60‒68Google Scholar
  102. [102]
    Richter-Kuhlmann EA (2012) Regenerative Medizin: Erfolge, aber keine Wunder. Deutsches Ärzteblatt 109 (48):A-2404/B-1960/C-1918Google Scholar
  103. [103]
    Rinderknecht E, Humbel RE (1978) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253:2769–2776PubMedPubMedCentralGoogle Scholar
  104. [104]
    Roitt IM, Brostoff J, Male D (2001) Immunology, 6. Aufl. Mosby, EdinburghGoogle Scholar
  105. [105]
    Ruddle FH, Kucherplati RS (1974) Hybrid cells and human genes. Sci Amer 231:36–49PubMedCrossRefPubMedCentralGoogle Scholar
  106. [106]
    Runstadler PW, Tung AS, Hayman EG, Ray NG, Sample JG, DeLucia DE (1990) Continuous culture with macroporous matrix, fluidized bed systems. Bioprocess Technol 10:363–391PubMedPubMedCentralGoogle Scholar
  107. [107]
    Sarmientos P, Duchesne M, Denefle P, Boiziau J, Fromage N, Delporte N, Parker F, Lelievre Y, Mayaux JF, Cartwright T (1989) Synthesis and purification of active human tissue plasminogen activator from Escherichia coli. Bio/Technology 7:495–501Google Scholar
  108. [108]
    Scarff M, Arnold SA, Harvey LM, McNeal B (2006) Near infrared spectroscopy for bioprocess monitoring and control: current status and future trends. Crit Rev Biotechnol 26:17‒39PubMedCrossRefPubMedCentralGoogle Scholar
  109. [109]
    Schlaeger EJ (1996) Medium design for insect cell culture. Cytotechnology 20:57‒70PubMedCrossRefPubMedCentralGoogle Scholar
  110. [110]
    Schwartz RS (2003) Diversity of the immune repertoire and immunoregulation. New Eng J Med 348:1017–1026PubMedCrossRefPubMedCentralGoogle Scholar
  111. [111]
    Sedlacek HH, Seemann G, Hoffmann D (1992) Antibodies as carriers of cytotoxicity. Monographie „Beiträge zur Onkologie“, Vol. 43. Karger, BaselGoogle Scholar
  112. [112]
    Smith LC, Pownall HJ, Gotto Jr, Gotto AM (1978) The plasma lipoproteins: structure and metabolism. Ann Rev Biochem 47:751–777PubMedCrossRefPubMedCentralGoogle Scholar
  113. [113]
    Storhas W (1994) Bioreaktoren und periphere Einrichtungen, 1. Aufl. Vieweg, Braunschweig, S 279–297CrossRefGoogle Scholar
  114. [114]
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:1‒12CrossRefGoogle Scholar
  115. [115]
    Tao Y, Shih J, Sinacore M, Ryll T, Yusuf-Makagiansar H (2011) Development and implementation of a perfusion-based high cell density cell banking process. Biotechnol Progr 27(3):824–829CrossRefGoogle Scholar
  116. [116]
    Trommer H (2009) Die Gute Herstellpraxis bei der industriellen Fertigung von Arzneimitteln. Apotheken-Magazin, Gebr. Storck GmbH & Co. Verlags oHG, Oberhausen, S 8‒14Google Scholar
  117. [117]
    Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578PubMedCrossRefPubMedCentralGoogle Scholar
  118. [118]
    Ulber R, Frerichs JG, Beutel S (2003) Optical sensor systems for bioprocess monitoring. Anal Bioanal Chem 376:342–348PubMedCrossRefPubMedCentralGoogle Scholar
  119. [119]
    Urlaub G, Chasin LA (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci USA 77:4216–4220PubMedPubMedCentralCrossRefGoogle Scholar
  120. [120]
    Verhar GA, Keyt B, Eaton D, Rodriguez H, O’Brien DP, Rotblat F, Oppermann H, Keck R, Wood WI, Harkins RN, Tuddenham EGD, Lawn RM, Capon DJ (1984) Structure of human factor VIII. Nature 312:337–342CrossRefGoogle Scholar
  121. [121]
    Voisard D, Meuwly F, Ruffieux P-A, Baer G, Kadour A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82:751‒765PubMedCrossRefPubMedCentralGoogle Scholar
  122. [122]
    Vorlop J, Lehmann J (1989) Oxygen transfer and carrier mixing in large scale membrane stirred culture reactors. In: Spier RE, Griffith JB, Stephenne J, Crooy PJ(Hrsg) Advances in animal cell biology and technology for bioprocesses, Butterworths, Svenoaks, S 366–369Google Scholar
  123. [123]
    Werner RG, Hoffmann H (1989) Biotechnische Produktion einer neuen Generation von Arzneimitteln: Therapie mit körpereigenen Wirkstoffen. Praxis der Naturwissenschaften/Chemie 38:3–12Google Scholar
  124. [124]
    Werner RG, Merk W, Walz F (1988) Fermentation with immobilized cell cultures. Arzneimittelforschung 38(2):320–325PubMedPubMedCentralGoogle Scholar
  125. [125]
    Wright B, Bruninghaus M, Vrabel M, Walther J, Shah N, Bae S-A, Johnson T, Yin J, Zhou W, Konstantinov K (2015) A novel seed-train process: using high-density cell banking, a disposable bioreactor, and perfusion technologies. Bd. 13. BioProcess International, März Supplement, Upstream Single-Use Technologies.Google Scholar
  126. [126]
    Yamane I (1978) Role of bovine serum albumin in a serum-free culture medium and its application. Natl Cancer Inst Monogr 48:131–133Google Scholar
  127. [127]
    Young MW, Okita WB, Brown EM, Curling JM (1997) Production of biopharmaceutical proteins in the milk of transgenic dairy animals. BioPharm 10:34–38Google Scholar
  128. [128]
    Zhang WJ, Collins A, Knyazev I, Gentz R (1998) High-density perfusion culture of insect cells with a BioSep ultrasonic filter. Biotechnol Bioeng 59:351–359PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Boehringer Ingelheim Pharma GmbH & Co. KGBiberachDeutschland
  2. 2.Boehringer Ingelheim Pharma GmbH & Co. KGBiberachDeutschland
  3. 3.Boehringer Ingelheim Pharma GmbH & Co. KGBiberachDeutschland

Personalised recommendations