Advertisement

Enzymkinetik

  • Kathrin Castiglione
Chapter

Zusammenfassung

Die Enzymkinetik beschäftigt sich mit der Untersuchung der Geschwindigkeit enzymkatalysierter Reaktionen. Durch die quantitative Analyse des Effekts verschiedener chemischer und physikalischer Parameter, wie beispielsweise Substrat- und Produktkonzentration oder Temperatur, auf die Umsetzungsgeschwindigkeit, können wichtige Informationen bezüglich des zugrundeliegenden Reaktionsmechanismus und der physikalischen Eigenschaften des biologischen Katalysators gewonnen werden. Die Geschwindigkeitsgleichungen, die aus den kinetischen Studien hervorgehen, können dazu verwendet werden, optimale Betriebspunkte für einen Bioprozess zu identifizieren.

Literatur

  1. [1]
    Bisswanger, H. (2000) Enzymkinetik: Theorie und Methoden, 3. Auflage Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. [2]
    Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339CrossRefGoogle Scholar
  3. [3]
    Carbonell P, Lecointre G, Faulon JL (2011) Origins of specificity and promiscuitivity in metabolic networks. J Biol Chem 286:43994–44004CrossRefGoogle Scholar
  4. [4]
    Chemnitius JM, Haselmeyer KH, Zech R (1982) Identification of isoenzymes in cholinesterase preparations using kinetic data of organo-phosphate inhibition. Anal Biochem 125(2):442–452CrossRefGoogle Scholar
  5. [5]
    Cleland W (1963a) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 67:104–137CrossRefGoogle Scholar
  6. [6]
    Cleland, W (1963b). The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta 67:173–187CrossRefGoogle Scholar
  7. [7]
    Colquhoun D (2006) The quantitative analysis of drug–receptor interactions: A short history. Trends Pharmacol Sci 27:149–157CrossRefGoogle Scholar
  8. [8]
    Cornish-Bowden A (2012) Fundamentals of enzyme kinetics, 4. Aufl. Wiley-VCH, WeinheimGoogle Scholar
  9. [9]
    Cornish-Bowden A (2014) Current IUMB recommendations on enzyme nomenclature and kinetics. Perspect Sci 1:74–87CrossRefGoogle Scholar
  10. [10]
    Dawson RMC, Elliott DC, Elliott WH, Jones KM (1986) Data for Biochemical Research. Clarendon Press, OxfordGoogle Scholar
  11. [11]
    Eisenthal R, Danson MJ, Hough DW (2007) Catalytic efficiency and kcat/Km: a useful comparator? Trends Biotechnol 25:247–249CrossRefGoogle Scholar
  12. [12]
    Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119CrossRefGoogle Scholar
  13. [13]
    Fahrney DE, Gold AM (1962) Sulfonyl fluorides as inhibitors of esterases. I. Rates of reaction with acetylcholinesterase, α-chymotrypsin, and trypsin. J Am Chem Soc 85:997–1000CrossRefGoogle Scholar
  14. [14]
    Grady JK, Chasteen ND, Harris DC (1988) Radicals from „Good’s“ buffers. Anal Biochem 173(1):111–115CrossRefGoogle Scholar
  15. [15]
    Hill, AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol-London 40:iv–viiGoogle Scholar
  16. [16]
    International Union of Biochemistry (1961) Report of the commission on enzymes. Pergamon Press, OxfordGoogle Scholar
  17. [17]
    Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization – Aqueous and non-aqueous environment. Proc Biochem 43:1019–1032CrossRefGoogle Scholar
  18. [18]
    King EL, Altman C (1956) A schematic method of deriving rate laws for enzyme-catalyzed reactions. J Phys Chem-US 60:1375–1378CrossRefGoogle Scholar
  19. [19]
    Koshland DE, Némethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry-US 5:365–385CrossRefGoogle Scholar
  20. [20]
    Leatherbarrow RJ (1990) Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci 15:455–458CrossRefGoogle Scholar
  21. [21]
    Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations, 2. Aufl.. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  22. [22]
    Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369Google Scholar
  23. [23]
    Monod J, Wyman J, Changeux (1965) On the nature of allosteric transitions: A plausible model. J Mol Biol 12:88–118CrossRefGoogle Scholar
  24. [24]
    Nelson DL, Cox MM (2013) Lehninger, Principles of biochemistry. Freeman, New YorkGoogle Scholar
  25. [25]
    Qi F, Dash RK, Han Y, Beard DA (2009) Generating rate equations for complex enzyme systems by a computer-assisted systematic method. BMC Bioinform 10:238CrossRefGoogle Scholar
  26. [26]
    Rakitzis ET (1990) Interpretation of biphasic protein modification and modification-induced enzyme inactivation reaction plots. J Enzyme Inhib 4:57–62CrossRefGoogle Scholar
  27. [27]
    Salihu A, Alam MZ (2015) Solvent tolerant lipases: A review. Process Biochem 50:86–96CrossRefGoogle Scholar
  28. [28]
    Schomburg I, Chang A, Schomburg D (2014) Standardization in enzymology – Data integration in the world’s enzyme information system BRENDA. Perspect Sci 1:15–23CrossRefGoogle Scholar
  29. [29]
    Segel IH (1993) Enzyme kinetics. Wiley, New YorkGoogle Scholar
  30. [30]
    Stoll VS, Blanchard JS (1990) Buffers: Principles and practice. Method Enzymol 182:24–38CrossRefGoogle Scholar
  31. [31]
    Straathof AJJ (2001) Development of a computer program for analysis of enzyme kinetics by progress curve fitting. J Mol Catal B-Enzym 11:991–998CrossRefGoogle Scholar
  32. [32]
    Strillinger E, Grötzinger SW, Allers T, Eppinger J, Weuster-Botz D (2015) Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor.  https://doi.org/10.1007/s00253-015-7007-1 CrossRefGoogle Scholar
  33. [33]
    Tipton K, Boyce S (2000) History of the enzyme nomenclature system. Bioinformatics 16 (1):34–40CrossRefGoogle Scholar
  34. [34]
    Thomas CR, Geer D (2011) Effects of shear on proteins in solution. Biotechnol Lett 33(3):443–456CrossRefGoogle Scholar
  35. [35]
    Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5(3):164–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen-NürnbergLehrstuhl für BioverfahrenstechnikErlangenDeutschland

Personalised recommendations