Skip to main content

Estimating RUL with Three-Source Variability in Degradation Modeling

  • Chapter
  • First Online:
Data-Driven Remaining Useful Life Prognosis Techniques

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 1927 Accesses

Abstract

Prognostics and health management (PHM) can make full use of condition monitoring (CM) data from a functioning system to assess the reliability of the system in its actual life-cycle conditions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haddad G, Sandborn PA, Pecht M (2012) An options approach for decision support of systems with prognostic capabilities. IEEE Trans Reliab 61(4):872–883

    Article  Google Scholar 

  2. Pecht M (2008) Prognostics and health management of electronics. Wiley, New Jersey

    Book  Google Scholar 

  3. Sheppard JW, Kaufman MA, Wilmering TJ (2009) IEEE standards for prognostics and health management. IEEE Aerosp Electron Syst Manag 22(9):34–41

    Article  Google Scholar 

  4. Zio E, Peloni G (2011) Particle filtering prognostic estimation of the remaining useful life of nonlinear components. Reliab Eng Syst Saf 96(3):403–409

    Article  Google Scholar 

  5. Elwany AH, Gebraeel NZ (2008) Sensor-driven prognostic models for equipment replacement and spare parts inventory. IIE Trans 40(7):629–639

    Article  Google Scholar 

  6. Huynh KT, Barros A, Bérengure C (2012) Maintenance decision-making for systems operating under indirect condition monitoring: value of online information and impact of measurement uncertainty. IEEE Trans Reliab 61(2):410–425

    Article  Google Scholar 

  7. Li R, Ryan JK (2011) A Bayesian inventory model using real-time condition monitoring information. Prod Oper Manag 20(5):754–771

    Article  Google Scholar 

  8. Si XS, Wang W, Hu CH, Zhou DH (2011) Remaining useful life estimation-a review on the statistical data driven approaches. Eur J Oper Res 213(1):1–14

    Article  MathSciNet  Google Scholar 

  9. Zio E, Di Maio F (2010) A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system. Reliab Eng Syst Saf 95(1):49–57

    Article  Google Scholar 

  10. Crowder M, Lawless J (2007) On a scheme for predictive maintenance. Eur J Oper Res 176(3):1713–1722

    Article  MathSciNet  MATH  Google Scholar 

  11. Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    MATH  Google Scholar 

  12. Pandey MD, Yuan XX, Van Noortwijk JM (2009) The influence of temporal uncertainty of deterioration on life-cycle management of structures. Struct Infrastruct Eng 5(2):145–156

    Article  Google Scholar 

  13. Peng CY, Tseng ST (2009) Mis-specification analysis of linear degradation models. IEEE Trans Reliab 58(3):444–455

    Article  Google Scholar 

  14. Whitmore GA (1995) Estimating degradation by a Wiener diffusion process subject to measurement error. Lifetime Data Anal 1(3):307–319

    Article  MATH  Google Scholar 

  15. Ye ZS, Shen Y, Xie M (2012) Degradation-based burn-in with preventive maintenance. Eur J Oper Res 221(2):360–367

    Article  MathSciNet  MATH  Google Scholar 

  16. Ye ZS, Wang Y, Tsui KL, Pecht M (2013) Degradation data analysis using Wiener processes with measurement errors. IEEE Trans Reliab 62(4):772–780

    Article  Google Scholar 

  17. Baraldi P, Mangili F, Zio E (2013) Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data. Reliab Eng Syst Saf 112(1):94–108

    Article  Google Scholar 

  18. Liu R, Ma L, Kang R, Wang N (2011) The modeling method on failure prognostics uncertainties in maintenance policy decision process. In: Proceedings of the 9th international conference on reliability, maintainability and safety (ICRMS), Guiyang, China, pp 12–15

    Google Scholar 

  19. Saxena A, Celaya J, Saha B, Saha S, Goebel K (2010) Evaluating prognostics performance for algorithms incorporating uncertainty estimates. In: Proceedings of the IEEE aerospace conference 2010

    Google Scholar 

  20. Aalen OO, Borgan O, Gjessing HK (2008) Survival and event history analysis: a process point of view. Springer, New York

    Book  MATH  Google Scholar 

  21. Giorgio M, Guida M, Pulcini G (2011) An age- and state-dependent Markov model for degradation processes. IIE Trans 43(9):621–632

    Article  Google Scholar 

  22. Singpurwalla ND (1995) Survival in dynamic environments. Stat Sci 10(1):86–103

    Article  MATH  Google Scholar 

  23. Gebraeel NZ, Lawley MA, Li R, Ryan JK (2005) Residual-life distributions from component degradation signals: a Bayesian approach. IIE Trans 37(6):543–557

    Article  Google Scholar 

  24. Yuan XX, Pandey MD (2009) A nonlinear mixed-effects model for degradation data obtained from in-service inspections. Reliab Eng Syst Saf 94(2):509–519

    Article  Google Scholar 

  25. Dieck RH (2004) Measurement uncertainty: methods and applications. The 4th edition, The Instrument Society of America, Research Triangular Park, North Carolina

    Google Scholar 

  26. Kolle C, O’Leary P (1998) Low-cost, high-precision measurement system, for capacitive sensors. Meas Sci Technol 9(3):510–517

    Article  Google Scholar 

  27. Oxtoby NP, Sun HB, Wiseman HM (2003) Non-ideal monitoring of a qubit state using a quantum tunnelling device. J Phys Condens Matter 15(46):8055–8064

    Article  Google Scholar 

  28. Chen N, Tsui KL (2013) Condition monitoring and residual life prediction using degradation signals: revisited. IIE Trans 45(9):939–952

    Article  Google Scholar 

  29. Joseph VR, Yu IT (2006) Reliability improvement experiments with degradation data. IEEE Trans Reliab 55(1):149–157

    Article  Google Scholar 

  30. Liao HT, Elsayed EA, Chan LY (2006) Maintenance of continuously monitored degrading systems. Eur J Oper Res 175(2):821–835

    Article  MATH  Google Scholar 

  31. Lu CJ, Meeker WQ (1993) Using degradation measures to estimate a time-to-failure distribution. Technometrics 35(2):161–174

    Article  MathSciNet  MATH  Google Scholar 

  32. Si XS, Wang W, Chen MY, Hu CH, Zhou DH (2013) A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mech Syst Signal Process 35(1–2):219–237

    Article  Google Scholar 

  33. Si XS, Wang W, Chen MY, Hu CH, Zhou DH (2013) A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution. Eur J Oper Res 226(1):53–66

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang J, Su TS (2008) Estimating failure time distribution and its parameters based on intermediate data from a Wiener degradation model. Nav Res Logist 55(3):265–276

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang W, Carr M, Xu W, Kobbacy AKH (2011) A model for residual life prediction based on Brownian motion with an adaptive drift. Microelectron Reliab 51(2):285–293

    Article  Google Scholar 

  36. Xu ZG, Ji YD, Zhou DH (2008) Real-time reliability prediction for a dynamic system based on the hidden degradation process identification. IEEE Trans Reliab 57(2):230–242

    Article  Google Scholar 

  37. Zhou YF, Sun Y, Mathew J, Wolff R, Ma L (2011) Latent degradation indicators estimation and prediction: a monte carlo approach. Mech Syst Signal Process 25(1):222–236

    Article  Google Scholar 

  38. Feng L, Wang HL, Si XS, Zou HX (2013) A state-space-based prognostic model for hidden and age-dependent nonlinear degradation process. IEEE Trans Autom Sci Eng. doi:10.1109/TASE.2012.2227960

    Google Scholar 

  39. Park JI, Bae SJ (2010) Direct prediction methods on lifetime distribution of organic light-emitting diodes from accelerated degradation tests. IEEE Trans Reliab 59(1):74–90

    Article  Google Scholar 

  40. Wang X, Xu DH (2010) An inverse gaussian process model for degradation data. Technometrics 52(2):188–197

    Article  MathSciNet  Google Scholar 

  41. Ye ZS, Chen N (2013) The inverse Gaussian process as a degradation model. Technometrics. doi:10.1198/TECH.2009.08197

    Google Scholar 

  42. Ye ZS (2013) On the conditional increments of degradation processes. Stat Probab Lett 83(11):2531–2536

    Article  MathSciNet  MATH  Google Scholar 

  43. Tseng ST, Tang J, Ku LH (2003) Determination of optimal burn-in parameters and residual life for highly reliable products. Nav Res Logist 50(1):1–14

    Article  MATH  Google Scholar 

  44. Sun JZ, Zuo HF, Wang W, Pecht MG (2012) Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance. Mech Syst Signal Process 28:585–596

    Article  Google Scholar 

  45. Lee MLT, Whitmore GA (2006) Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary. Stat Sci 21(4):501–513

    Article  MathSciNet  MATH  Google Scholar 

  46. Cox DR, Miller HD (1965) The theory of stochastic processes. Methuen and Company, London

    MATH  Google Scholar 

  47. Si XS, Zhou DH (2013) A generalized result for degradation model based reliability estimation. IEEE Trans Autom Sci Eng. doi:10.1109/TASE.2013.2260740

    Google Scholar 

  48. Demidenko E (2004) Mixed models: theory and applications. Wiley, New York

    Book  MATH  Google Scholar 

  49. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–722

    Article  MathSciNet  MATH  Google Scholar 

  50. Carr MJ, Wang W (2011) An approximate algorithm for prognostic modelling using condition monitoring information. Eur J Oper Res 211(1):90–96

    Article  MATH  Google Scholar 

  51. Si XS, Chen MY, Wang W, Hu CH, Zhou DH (2013) Specifying measurement errors for required lifetime estimation performance. Eur J Oper Res 231(3):631–644

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Sheng Si .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 National Defense Industry Press and Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Si, XS., Zhang, ZX., Hu, CH. (2017). Estimating RUL with Three-Source Variability in Degradation Modeling. In: Data-Driven Remaining Useful Life Prognosis Techniques. Springer Series in Reliability Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54030-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54030-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54028-2

  • Online ISBN: 978-3-662-54030-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics