Skip to main content

Neurobiological Mechanisms of Chronic Orofacial Pain

  • Chapter
  • First Online:
Orofacial Pain Biomarkers

Abstract

This chapter reviews the several mechanisms in orofacial tissues and trigeminal nociceptive pathways in the brain that may account for chronic orofacial pain. Peripheral sensitization and central sensitization are particularly emphasized since they have characteristics that can explain the spontaneous nature, hyperalgesia, allodynia, and spread and referral of pain resulting from injury or inflammation of orofacial tissues and nerves. The chapter also notes several neural and non-neural modulatory factors influencing these mechanisms and their clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melzack R, Casey KL. Sensory, motivational and central control determinants of pain: a new conceptual model. In: Kenshalo DL, editor. The skin senses. Springfield: CC Thomas; 1968. p. 423–43.

    Google Scholar 

  2. Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med. 2000;11:57–91.

    Article  PubMed  Google Scholar 

  3. Lipton JA, Ship JA, Larach-Robinson D. Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc. 1993;124:115–21.

    Article  PubMed  Google Scholar 

  4. LeResche L, Drangsholt M. Epidemiology of orofacial pain: prevalence, incidence, and risk factors. In: Sessle BJ, Lavigne G, Dubner R, Lund JP, editors. Orofacial pain. 2nd ed. Chicago: Quintessence; 2008. p. 13–8.

    Google Scholar 

  5. Macfarlane TV. Epidemiology of orofacial pain. In: Sessle BJ, editor. Orofacial pain. Chicago: Quintessence; 2014. p. 33–51.

    Google Scholar 

  6. Sessle BJ. Mechanisms of oral somatosensory and motor functions and their clinical correlates. J Oral Rehabil. 2006;33:243–61.

    Article  PubMed  Google Scholar 

  7. Sessle BJ. Role of peripheral mechanisms in craniofacial pain conditions. In: Cairns BE, editor. Peripheral receptor targets for analgesia: novel approaches to pain management. New York: Wiley; 2009. p. 3–20.

    Google Scholar 

  8. Lam DK, Sessle BJ, Cairns BE, Hu JW. Neural mechanisms of temporomandibular joint and masticatory muscle pain: a possible role for peripheral glutamate receptor mechanisms. Pain Res Manag. 2005;10:145–52.

    Article  PubMed  Google Scholar 

  9. Meyer RA, Ringkamp M, Campbell JN, Raja SN. Peripheral mechanisms of cutaneous nociception. In: McMahon SB, Koltzenburg M, editors. Wall and Melzack’s textbook of pain. 5th ed. Amsterdam: Elsevier; 2006. p. 3–34.

    Chapter  Google Scholar 

  10. Dubner R, Ren K, Sessle BJ. Sensory mechanisms of orofacial pain. In: Greene C, Laskin D, editors. Treatment of TMDs: bridging the gap between advances in research and clinical patient management. Chicago: Quintessence; 2013. p. 3–16.

    Google Scholar 

  11. Dray A. Future pharmacologic management of neuropathic pain. J Orofac Pain. 2004;18:381–5.

    PubMed  Google Scholar 

  12. Hucho T, Levine JD. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron. 2007;55:365–76.

    Article  PubMed  Google Scholar 

  13. Cairns BE, editor. Peripheral receptor targets for analgesia: novel approaches to pain management. New York: Wiley; 2009. p. 541.

    Google Scholar 

  14. Kopp S. Neuroendocrine, immune, and local responses related to temporomandibular disorders. J Orofac Pain. 2001;15:9–28.

    PubMed  Google Scholar 

  15. Dostrovsky JO, Craig AD. Ascending projection systems. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC, editors. Textbook of pain. 6th ed. Philadelphia: Elsevier; 2013. p. 182–97.

    Google Scholar 

  16. Bereiter DA, Hiraba H, Hu JW. Trigeminal subnucleus caudalis beyond homologies with the spinal dorsal horn. Pain. 2000;88:221–4.

    Article  PubMed  Google Scholar 

  17. Guy N, Chalus M, Dallel R, Voisin DL. Both oral and caudal parts of the spinal trigeminal nucleus project to the somatosensory thalamus in the rat. Eur J Neurosci. 2005;21(3):741–54.

    Article  PubMed  Google Scholar 

  18. Maixner W. Pain modulatory systems. In: Sessle BJ, Lavigne GJ, Lund JP, Dubner R, editors. Orofacial pain: from basic science to clinical management. 2nd ed. Chicago: Quintessence; 2008. p. 61–8.

    Google Scholar 

  19. Peever JH, Sessle BJ. Sensory and motor processing during sleep and wakefulness. In: Kryger M, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: Elsevier; 2011, Chapter 30.

    Google Scholar 

  20. Price DD, Finnisss DG, Benedetti FA. A comprehensive review of the placebo effect: recent advances and current thought. Annu Rev Psychol. 2008;59:565–90.

    Article  PubMed  Google Scholar 

  21. Colloca L, Klinger R, Flor H, Bingel U. Placebo analgesia: psychological and neurobiological mechanisms. Pain. 2013;154:511–4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dooley DJ, Taylor CP, Donevan S, Feltner D. Ca2+ channel alpha2delta ligands: novel modulators of neurotransmission. Trends Pharmacol Sci. 2007;28:75–82.

    Article  PubMed  Google Scholar 

  23. Dharmshatktu P, Tayal V, Kalra BS. Efficacy of antidepressants as analgesics: a review. J Clin Pharmacol. 2012;52:6–17.

    Article  Google Scholar 

  24. Iwata K, Imamura Y, Honda K, Shinoda M. Physiological mechanisms of neuropathic pain: the orofacial region. Int Rev Neurobiol. 2011;97:227–50.

    Article  PubMed  Google Scholar 

  25. Sessle BJ. Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev Neurobiol. 2011;97:179–206.

    Article  PubMed  Google Scholar 

  26. Bennett GJ. Neuropathic pain in the orofacial region: clinical and research challenges. J Orofac Pain. 2004;18:281–6.

    PubMed  Google Scholar 

  27. Baron R, Binder A, Schattschneider J, Wasner G. Pathophysiology and treatment of complex regional pain syndromes. In: Dostrovsky JO, Carr DB, Koltzenburg M, editors. Proceedings of the 10th world congress on pain, progress in pain research and management, vol. 24. Seattle: IASP Press; 2003. p. 683–704.

    Google Scholar 

  28. Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ. Role of glia in orofacial pain. Neuroscientist. 2011;17:303–20.

    Article  PubMed  Google Scholar 

  29. Mailis A, Amani N, Umana M, Basur R, Roe S. Effect of intravenous sodium amytal on cutaneous sensory abnormalities, spontaneous pain and algometric pain pressure thresholds in neuropathic pain patients: a placebo-controlled study. II. Pain. 1997;70:69–81.

    Article  PubMed  Google Scholar 

  30. Sharav Y, Benoliel R, editors. Orofacial pain and headache. Toronto: Mosby Elsevier; 2008. p. 441.

    Google Scholar 

  31. Zagury J, Eliav E, Heir GM, Nasri-Heir C, Ananthan S, Pertes R, Sharav Y, Benoliel R. Prolonged gingival cold allodynia: a novel finding in patients with atypical odontalgia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:312–9.

    Article  PubMed  Google Scholar 

  32. Konopka K-H, Harbers M, Houghton A, Kortekaas R, van Vliet A, Timmerman W, den Boer JA, Struys MMRF, van Wijhe M. Bilateral sensory abnormalities in patients with unilateral neuropathic pain: a quantitative sensory testing (QST) study. PLoS One. 2012;7:e37524.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Puta C, Schulz B, Schoeler S, Magerl W, Gabriel B, Gabriel HH, Miltner WH, Weiss T. Somatosensory abnormalities for painful and innocuous stimuli at the back and at a site distinct from the region of pain in chronic back pain patients. PLoS One. 2013;8:e58885.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jaggi AS, Singh N. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res. 2011;1381:187–201.

    Article  PubMed  Google Scholar 

  35. Han SR, Yang GY, Ahn MH, Kim MJ, Ju JS, Bae YC, Ahn DK. Blockade of microglial activation reduces mechanical allodynia in rats with compression of the trigeminal ganglion. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36:52–9.

    Article  PubMed  Google Scholar 

  36. Park SJ, Zhang S, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ. Central sensitization induced in thalamic nociceptive neurons by tooth pulp stimulation is dependent on the functional integrity of trigeminal brainstem subnucleus caudalis but not subnucleus oralis. Brain Res. 2006;1112:134–45.

    Article  PubMed  Google Scholar 

  37. Adachi K, Lee J-C, Yao D, Sessle BJ. Motor cortex (MI) neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res. 2007;24:97–109.

    Article  PubMed  Google Scholar 

  38. Yao D, Sessle BJ. Trigeminal nerve injury induces neuroplastic changes in face motor cortex (face-MI) as well as facial mechanical hypersensitivity in rats. IASP NeupSIG abstract, Fourth International Congress on Neuropathic Pain, Toronto, May 2013.

    Google Scholar 

  39. Youssef AM, Gustin SM, Nash PG, Reeves JM, Petersen ET, Peck CC, Murray GM, Henderson LA. Differential brain activity in subjects with painful trigeminal neuropathy and painful temporomandibular disorder. Pain. 2014;155:467–75.

    Article  PubMed  Google Scholar 

  40. Seltzer Z, Mogil JS. Pain and genetics. In: Sessle BJ, Lavigne GJ, Lund JP, Dubner R, editors. Orofacial pain: from basic science to clinical management. 2nd ed. Chicago: Quintessence; 2008. p. 69–75.

    Google Scholar 

  41. Mogil JS. Pain genetics: past, present and future. Trends Genet. 2012;6:258–66.

    Article  Google Scholar 

  42. Varathan V, Cherkas PS, Sessle BJ. Genetic factors are involved in the nociceptive behaviour, medullary dorsal horn (MDH) central sensitisation and glial morphological changes occurring in mice following trigeminal nerve injury. IASP NeupSIG abstract, Fourth International Congress on Neuropathic Pain, Toronto, May 2013.

    Google Scholar 

  43. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;15:1017–21.

    Article  Google Scholar 

  44. Moayedi M, Weissman-Fogel I, Salomons TV, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD. Abnormal gray matter aging in chronic pain patients. Brain Res. 2012;1456:82–93.

    Article  PubMed  Google Scholar 

  45. Narita N, Kumar N, Cherkas PS, Chiang CY, Dostrovsky JO, Coderre TJ, Sessle BJ. Systemic pregabalin attenuates sensorimotor responses and medullary glutamate release in inflammatory tooth pain model. Neurosci. 2012;218:359–66.

    Article  Google Scholar 

  46. Cao Y, Wang H, Chiang CY, Dostrovsky JO, Sessle BJ. Pregabalin suppresses nociceptive behavior and central sensitization in a rat trigeminal neuropathic pain model. J Pain. 2013;14:193–204.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lund JP, Sessle BJ. Neurophysiological mechanisms related to chronic pain disorders of the temporomandibular joint and masticatory muscles. In: Zarb G, Carlsson G, Sessle BJ, Mohl N, editors. Temporomandibular joint and masticatory muscle disorders. Copenhagen: Munksgaard; 1994. p. 188–207.

    Google Scholar 

  48. Chiang CY, Park SJ, Kwan CL, Hu JW, Sessle BJ. NMDA receptor mechanisms contribute to neuroplasticity induced in caudalis nociceptive neurons by tooth pulp stimulation. J Neurophysiol. 1998;80:2621–31.

    PubMed  Google Scholar 

Download references

Acknowledgments

The cited research studies by the author have been supported by the US National Institutes of Health, the Canadian Institutes for Health Research, the Canadian Foundation for Innovation, the Ontario Ministry of Research and Innovation, Pfizer Canada, and The Canada Research Chair program

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Sessle MDS, PhD, DSc (hc), FRSC, FCAHS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Sessle, B.J. (2017). Neurobiological Mechanisms of Chronic Orofacial Pain. In: Goulet, JP., Velly, A. (eds) Orofacial Pain Biomarkers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53994-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53994-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53992-7

  • Online ISBN: 978-3-662-53994-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics