Skip to main content

Porous Structures from Fibrous Proteins for Biomedical Applications

  • Chapter
  • First Online:
Porous lightweight composites reinforced with fibrous structures
  • 952 Accesses

Abstract

Porous protein structures render biomaterials similar to their natural counterparts, extracellular matrices (ECMs), regarding both structure and material. Proteins in fibrous form have attracted considerable attention for fabrication of porous structures, as ECMs are composed of nanoscale protein fibers oriented randomly in three dimensions. Pores or voids created by random arrangements of the fibers provide spaces for cells to grow and spread. Fibrous structures could further facilitate cell attachment and guide cellular development and signaling. As technical difficulties have been gradually tackled, developing fibrous proteinous structures as biomaterials are arousing more interests. Micro- and nanofibrous structures have been developed from animal proteins, e.g., collagen, fibroin, keratin, and plant proteins, e.g., zein, soyprotein, and wheat gluten, via wet spinning, electrospinning, phase separation and other approaches. However, proteins as biomaterials usually suffer from inferior water stability, fast degradation, and poor mechanical properties. To circumvent these problems, crosslinking approaches have been applied, or synthetic polymers have been incorporated to improve the performance properties of proteins in aqueous environments.

The original version of this chapter was revised.

An erratum to this chapter can be found at https://doi.org/10.1007/978-3-662-53804-3_14.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito Y (1999) Surface micropatterning to regulate cell functions. Biomaterials 20:2333–2342

    Article  Google Scholar 

  2. Ruoslahti E (1996) RGD and other recognition sequence for integrins. Annu Rev Cel Dev Biol 12:697–715

    Article  Google Scholar 

  3. Reddy N, Yang Y (2007) Novel protein fibers from wheat gluten. Biomacromolecules 8:638–643

    Article  Google Scholar 

  4. Zhou J, Cao C, Ma X, Lin J (2010) Electrospinning of silk fibroin and collagen for vascular tissue engineering. Int J Biol Macromol 47:514–519

    Article  Google Scholar 

  5. Nam J, Huang Y, Agarwal S, Lannutti J (2007) Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 13:2249–2257

    Article  Google Scholar 

  6. Park SY, Ki CS, Park YH, Jung HM, Woo KM, Kim HJ (2010) Electrospun silk fibroin scaffolds with macropores for bone regeneration: an in vitro and in vivo study. Tissue Eng A 16:1271–1279

    Article  Google Scholar 

  7. Cai S, Xu H, Jiang Q, Yang Y (2013) Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study. Langmuir 29:2311–2318

    Article  Google Scholar 

  8. Wei G, Ma PX (2006) Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res 78A:306–315

    Article  Google Scholar 

  9. Wang YC, Lin MC, Wang DM, Hsieh HJ (2003) Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24:1047–1057

    Article  Google Scholar 

  10. Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46:60–72

    Article  Google Scholar 

  11. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    Article  Google Scholar 

  12. Shields KJ, Beckman MJ, Bowlin GL, Wayne JS (2004) Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng 10:1510–1517

    Article  Google Scholar 

  13. Huang L, Nagapudi K, Apkarian RP, Chaikof EL (2001) Engineered collagen–PEO nanofibers and fabrics. J Biomater Sci Polym Ed 12:979–993

    Article  Google Scholar 

  14. Dong B, Arnoult O, Smith ME, Wnek GE (2009) Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromol Rapid Commun 30:539–542

    Article  Google Scholar 

  15. Jiang Q, Reddy N, Zhang S, Roscioli N, Yang Y (2013) Water-stable electrospun collagen fibers from a non-toxic solvent and crosslinking system. J Biomed Mater Res A 101A:1237–1247

    Article  Google Scholar 

  16. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369

    Article  Google Scholar 

  17. Xu H, Yang Y (2014) Controlled de-cross-linking and disentanglement of feather keratin for fiber preparation via a novel process. ACS Sustain Chem Eng 2(6):1404–1410

    Article  Google Scholar 

  18. Xu H, Cai S, Xu L, Yang Y (2014) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30(28):8461–8470

    Article  Google Scholar 

  19. Matthews JA, Boland ED, Wnek GE, Simpson DG, Bowlin GL (2003) Electrospinning of collagen type II: a feasibility study. J Bioact Compat Polym 18:125–134

    Article  Google Scholar 

  20. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27:724–734

    Article  Google Scholar 

  21. Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ (2009) The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials 30:583–588

    Article  Google Scholar 

  22. Meyer M, Baltzer H, Schwikal K (2010) Collagen fibres by thermoplastic and wet spinning. Mater Sci Eng C 30:1266–1271

    Article  Google Scholar 

  23. Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ (2010) Electrospun collagen–chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater 6:372–382

    Article  Google Scholar 

  24. Rnjak-Kovacina J, Wise SG, Li Z, Maitz PKM, Young CJ, Wang Y, Weiss AS (2012) Electrospun synthetic human elastin: collagen composite scaffolds for dermal tissue engineering. Acta Biomater 8:3714–3722

    Article  Google Scholar 

  25. Hosseinkhani H, Tabata Y (2003) In vitro gene expression by cationized derivatives of an artificial protein with repeated RGD sequences, Pronectin®. J Control Release 86:169–182

    Article  Google Scholar 

  26. Van Vlierberghe S, Vanderleyden E, Dubruel P, De Vos F, Schacht E (2009) Affinity study of novel gelatin cell carriers for fibronectin. Macromol Biosci 9:1105–1115

    Article  Google Scholar 

  27. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  Google Scholar 

  28. Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Choi WY, Kim HE (2012) Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. J Mater Chem 22:14133–14140

    Article  Google Scholar 

  29. Takagi J (2004) Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem Soc Trans 32:403–406

    Article  Google Scholar 

  30. Rujitanaroj PO, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–4732

    Article  Google Scholar 

  31. Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF (2010) Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A 94A:1312–1320

    Google Scholar 

  32. Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30:4094–4103

    Article  Google Scholar 

  33. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008

    Article  Google Scholar 

  34. Song JH, Kim HE, Kim HW (2008) Production of electrospun gelatin nanofiber by water-based co-solvent approach. J Mater Sci Mater Med 19:95–102

    Article  Google Scholar 

  35. Panzavolta S, Gioffrè M, Focarete ML, Gualandi C, Foroni L, Bigi A (2011) Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 7:1702–1709

    Article  Google Scholar 

  36. Chen HC, Jao WC, Yang MC (2009) Characterization of gelatin nanofibers electrospun using ethanol/formic acid/water as a solvent. Polym Adv Technol 20:98–103

    Article  Google Scholar 

  37. Aduba DC Jr, Hammer JA, Yuan Q, Andrew Yeudall W, Bowlin GL, Yang H (2013) Semi-interpenetrating network (sIPN) gelatin nanofiber scaffolds for oral mucosal drug delivery. Acta Biomater 9:6576–6584

    Article  Google Scholar 

  38. Huang CH, Chi CY, Chen YS, Chen KY, Chen PL, Yao CH (2012) Evaluation of proanthocyanidin-crosslinked electrospun gelatin nanofibers for drug delivering system. Mater Sci Eng C 32:2476–2483

    Article  Google Scholar 

  39. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  Google Scholar 

  40. Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    Article  Google Scholar 

  41. Jiang C, Wang X, Gunawidjaja R, Lin YH, Gupta MK, Kaplan DL, Naik RR, Tsukruk VV (2007) Mechanical properties of robust ultrathin silk fibroin films. Adv Funct Mater 17:2229–2237

    Article  Google Scholar 

  42. Liu H, Fan H, Wang Y, Toh SL, Goh JCH (2008) The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials 29:662–674

    Article  Google Scholar 

  43. Shangkai C, Naohide T, Koji Y, Yasuji H, Masaaki N, Tomohiro T, Yasushi T (2007) Transplantation of allogeneic chondrocytes cultured in fibroin sponge and stirring chamber to promote cartilage regeneration. Tissue Eng 13:483–492

    Article  Google Scholar 

  44. Jin HJ, Chen J, Karageorgiou V, Altman GH, Kaplan DL (2004) Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25:1039–1047

    Article  Google Scholar 

  45. Kinahan ME, Filippidi E, Köster S, Hu X, Evans HM, Pfohl T, Kaplan DL, Wong J (2011) Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12:1504–1511

    Article  Google Scholar 

  46. Yan J, Zhou G, Knight DP, Shao Z, Chen X (2009) Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters. Biomacromolecules 11:1–5

    Article  Google Scholar 

  47. Kim JH, Park CH, Lee OJ, Lee JM, Kim JW, Park YH, Ki CS (2012) Preparation and in vivo degradation of controlled biodegradability of electrospun silk fibroin nanofiber mats. J Biomed Mater Res A 100A:3287–3295

    Article  Google Scholar 

  48. Cristino S, Grassi F, Toneguzzi S, Piacentini A, Grigolo B, Santi S, Riccio M, Tognana E, Facchini A, Lisignoli G (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11®-based prototype ligament scaffold. J Biomed Mater Res A 73A:275–283

    Article  Google Scholar 

  49. Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26:7082–7094

    Article  Google Scholar 

  50. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    Article  Google Scholar 

  51. Lovett ML, Cannizzaro CM, Vunjak-Novakovic G, Kaplan DL (2008) Gel spinning of silk tubes for tissue engineering. Biomaterials 29:4650–4657

    Article  Google Scholar 

  52. Liu H, Li X, Zhou G, Fan H, Fan Y (2011) Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials 32:3784–3793

    Article  Google Scholar 

  53. Pan H, Zhang Y, Hang Y, Shao H, Hu X, Xu Y, Feng C (2012) Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. Biomacromolecules 13:2859–2867

    Article  Google Scholar 

  54. Aznar-Cervantes S, Roca MI, Martinez JG, Meseguer-Olmo L, Cenis JL, Moraleda JM, Otero TF (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43

    Article  Google Scholar 

  55. Kishimoto Y, Ito F, Usami H, Togawa E, Tsukada M, Morikawa H, Yamanaka S (2013) Nanocomposite of silk fibroin nanofiber and montmorillonite: fabrication and morphology. Int J Biol Macromol 57:124–128

    Article  Google Scholar 

  56. Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trends Biotechnol 29(10):490–498

    Article  Google Scholar 

  57. Li Y, Lim LT, Kakuda Y (2009) Electrospun zein fibers as carriers to stabilize (−)‐epigallocatechin gallate. J Food Sci 74(3):C233–C240

    Article  Google Scholar 

  58. Jiang YN, Mo HY, Yu DG (2012) Electrospun drug-loaded core–sheath PVP/zein nanofibers for biphasic drug release. Int J Pharm 438:232–239

    Article  Google Scholar 

  59. Selling GW, Woods KK, Sessa D, Biswas A (2008) Electrospun zein fibers using glutaraldehyde as the crosslinking reagent: effect of time and temperature. Macromol Chem Phys 209:1003–1011

    Article  Google Scholar 

  60. Jiang Q, Reddy N, Yang Y (2010) Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomater 6(10):4042–4051

    Article  Google Scholar 

  61. Karthikeyan K, Guhathakarta S, Rajaram R, Korrapati PS (2012) Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int J Pharm 438:117–122

    Article  Google Scholar 

  62. Lin J, Li C, Zhao Y, Hu J, Zhang LM (2012) Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl Mater Interfaces 4:1050–1057

    Article  Google Scholar 

  63. Brahatheeswaran D, Mathew A, Aswathy RG, Nagaoka Y, Venugopal K, Yoshida Y, Maekawa T, Sakthikumar D (2012) Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomed Mater 7:045001

    Article  Google Scholar 

  64. Huang W, Zou T, Li S, Jing J, Xia X, Liu X (2013) Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS PharmSciTech 14:675–681

    Article  Google Scholar 

  65. Yang JM, Zha LS, Yu DG, Liu J (2013) Coaxial electrospinning with acetic acid for preparing ferulic acid/zein composite fibers with improved drug release profiles. Colloids Surf B: Biointerfaces 102:737–743

    Article  Google Scholar 

  66. Woerdeman DL, Ye P, Shenoy S, Parnas RS, Wnek GE, Trofimova O (2005) Electrospun fibers from wheat protein: investigation of the interplay between molecular structure and the fluid dynamics of the electrospinning process. Biomacromolecules 6:707–712

    Article  Google Scholar 

  67. Reddy N, Yang Y (2008) Self-crosslinked gliadin fibers with high strength and water stability for potential medical applications. J Mater Sci Mater Med 19:2055–2061

    Article  Google Scholar 

  68. Reddy N, Yang Y (2009) Soyprotein fibers with high strength and water stability for potential medical applications. Biotechnol Progr 25:1796–1802

    Article  Google Scholar 

  69. Woerdeman DL, Shenoy S, Breger D (2007) Effects of hydroxyl groups versus physical entanglements on the electrospinning behavior of wheat protein. J Biobased Mater Bioenergy 1:31–36

    Google Scholar 

  70. Xu W, Yang Y (2010) Drug loading onto and release from wheat gluten fibers. J Appl Polym Sci 116:708–717

    Article  Google Scholar 

  71. Xu W, Yang Y (2009) Drug sorption onto and release from soy protein fibers. J Mater Sci Mater Med 20:2477–2486

    Article  Google Scholar 

  72. Vega-Lugo AC, Lim LT (2009) Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res Int 42:933–940

    Article  Google Scholar 

  73. Sinha-Ray S, Zhang Y, Yarin AL, Davis SC, Pourdeyhimi B (2011) Solution blowing of soy protein fibers. Biomacromolecules 12:2357–2363

    Article  Google Scholar 

  74. Xu X, Jiang L, Zhou Z, Wu X, Wang Y (2012) Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes. ACS Appl Mater Interfaces 4:4331–4337

    Article  Google Scholar 

  75. Cho D, Netravali AN, Joo YL (2012) Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers. Polym Degrad Stab 97:747–754

    Article  Google Scholar 

  76. Xu H, Cai S, Sellers A, Yang Y (2014) Intrinsically water-stable electrospun three-dimensional ultrafine fibrous soy protein scaffolds for soft tissue engineering using adipose derived mesenchymal stem cells. RSC Adv 4(30):15451–15457

    Article  Google Scholar 

  77. Dong J, Asandei AD, Parnas RS (2010) Aqueous electrospinning of wheat gluten fibers with thiolated additives. Polymer 51:3164–3172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Xu, H., Yang, Y. (2017). Porous Structures from Fibrous Proteins for Biomedical Applications. In: Yang, Y., Yu, J., Xu, H., Sun, B. (eds) Porous lightweight composites reinforced with fibrous structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53804-3_7

Download citation

Publish with us

Policies and ethics