Skip to main content

Advanced Grid Structure-Reinforced Composites

  • Chapter
  • First Online:
Porous lightweight composites reinforced with fibrous structures

Abstract

This chapter summarizes the current status of composites reinforced with advanced grid structures. We introduce classification of the mesh structure, its characteristics, structural design and process, molding and performance analysis, and applications for mesh structural composites (or lattice structural composites or grid structural composites). First, we provide a summary of the international status and development of mesh structure composite materials, and then the critical technology involved in mesh structural composites, its processing, testing, and so on are discussed in detail. Principles of structure design and the advantages and disadvantages of various molding process for mesh structural composites are also presented. Information on the structure molding, performance evaluation, and testing methods is also given in detail. Finally, the potential application of diverse mesh structure composites in both aerospace and civil fields is analyzed in association with the main applications of mesh structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vasiliev VV, Barynin VA, Razin AF (2012) Anisogrid composite lattice structures–development and aerospace applications. Compos Struct 94(3):1117–1127

    Article  Google Scholar 

  2. Vasiliev V, Barynin V, Rasin A (2001) Anisogrid lattice structures–survey of development and application. Compos Struct 54(2–3):361–370

    Article  Google Scholar 

  3. Huybrechts SM, Hahn SE, Meink TE (1999) Grid stiffened structures: a survey of fabrication, analysis and design methods [paper no. 357]. In: 12th International conference on composite materials (ICCM/12), Paris

    Google Scholar 

  4. Huybrechts S, Tsai SW (1996) Analysis and behavior of grid structures. Compos Sci Technol 56:1001–1015

    Article  Google Scholar 

  5. Morozov E, Lopatin A, Nesterov V (2011) Finite-element modelling and buckling analysis of anisogrid composite lattice cylindrical shells. Compos Struct 93(2):308–323

    Article  Google Scholar 

  6. Buragohaim M, Velmurugan R (2011) Study of filament wound grid-stiffened composite cylindrical structures. Compos Struct 93:1011–1038

    Google Scholar 

  7. Huybrechts SM, Meink TE, Wegner PM, Ganley JM (2002) Manufacturing theory for advanced grid stiffened structures. Compos Part A Appl S 33:155–161

    Article  Google Scholar 

  8. Rieber G, Jiang J, Deter C, Chen N, Mitschang P (2013) Influence of textile parameters on the in-plane permeability. Compos Part A Appl S 52:89–98

    Article  Google Scholar 

  9. Fan H, Fang D, Jin F (2008) Mechanical properties of lattice grid composites. Acta Mech Sinica 24(4):409–418

    Article  Google Scholar 

  10. Velmurugan R, Buragohain M (2007) Buckling analysis of grid-stiffened composite cylindrical shell. J Aerosp Sci Technol 59(4):282

    Google Scholar 

  11. Paschero M, Hyer MW (2009) Axial buckling of an orthotropic circular cylinder: application to orthogrid concept. Int J Solid Struct 46(10):2151–2171

    Article  Google Scholar 

  12. Zhang Y, Xue Z, Chen L, Fang D (2009) Deformation and failure mechanisms of lattice cylindrical shells under axial loading. Int J Mech Sci 51(3):213–221

    Article  Google Scholar 

  13. Zhang Z, Chen H, Ye L (2008) Progressive failure analysis for advanced grid stiffened composite plates/shells. Compos Struct 86(1):45–54

    Article  Google Scholar 

  14. Zhang Z, Chen H, Ye L (2011) A stiffened plate element model for advanced grid stiffened composite plates/shells. J Compos Mater 45(2):187–202

    Article  Google Scholar 

  15. Vasiliev V, Barynin V, Rasin A, Petrokovskii S, Khalimanovich V (2009) Anisogrid composite lattice structures–development and space applications. Compos Nanostruct 3:38–50

    Google Scholar 

  16. Vasiliev VV, Razin AF (2006) Anisogrid composite lattice structures for spacecraft and aircraft applications. Compos Struct 76(1–2):182–189. doi:10.1016/j.compstruct.2006.06.025

    Article  Google Scholar 

  17. Tsai SHSW (1996) Analysis and behavior of grid structures. J Compos Sci Technol 56:1001–1015

    Article  Google Scholar 

  18. Huang L, Sheikh AH, Ng C-T, Griffith MC (2015) An efficient finite element model for buckling analysis of grid stiffened laminated composite plates. Compos Struct 122:41–50

    Article  Google Scholar 

  19. Wang D, Abdalla MM (2015) Global and local buckling analysis of grid-stiffened composite panels. Compos Struct 119:767–776

    Article  Google Scholar 

  20. Huybrechts S, Meink TE (2000) Advanced grid stiffened structures for the next generation of launch vehicles. Compos Struct 40(2):28–32

    Google Scholar 

  21. D’Amico B, Kermani A, Zhang H, Shepherd P, Williams CJK (2015) Optimization of cross-section of actively bent grid shells with strength and geometric compatibility constraints. Comput Struct 154:163–176

    Article  Google Scholar 

  22. Zheng Q, Ju S, Jiang D (2014) Anisotropic mechanical properties of diamond lattice composites structures. Compos Struct 109:23–30

    Article  Google Scholar 

  23. Jones RT, Hague D (1972) Application of multivariable search techniques to structural design optimization, vol 2038. National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  24. Gürdal Z, Gendron G (1993) Optimal design of geodesically stiffened composite cylindrical shells. Compos Eng 3(12):1131–1147

    Article  Google Scholar 

  25. Chen B, Liu G, Kang J, Li Y (2008) Design optimization of stiffened storage tank for spacecraft. Struct Multidiscip Opt 36(1):83–92

    Article  Google Scholar 

  26. Simitses G (1993) Optimization of stiffened cylindrical shells subjected to destabilizing loads. Prog Astronaut Aeronaut 150:663–663

    Google Scholar 

  27. Reddy AD, Valisetty R, Rehfield LW (1985) Continuous filament wound composite concepts for aircraft fuselage structures. J Aircraft 22(3):249–255

    Article  Google Scholar 

  28. Nagendra S, Haftka RT, Gurdal Z (1993) Design of a blade stiffened composite panel by a genetic algorithm. In: Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, La Jolla, 19–22 Apr 1993. AIAA, Reston, pp 2418–2436

    Google Scholar 

  29. Jaunky N, Knight NF, Ambur DR (1998) Optimal design of general stiffened composite circular cylinders for global buckling with strength constraints. Compos Struct 41(3):243–252

    Article  Google Scholar 

  30. Ambur DR, Jaunky N (2001) Optimal design of grid-stiffened panels and shells with variable curvature. Compos Struct 52(2):173–180

    Article  Google Scholar 

  31. Crossley WA, Laananen DH (1996) Genetic algorithm-based optimal design of stiffened composite panels for energy absorption. In: Proceeding of the American Helicopter Society 52nd annual forum, Washington, DC, 4–6 June 1995. American Helicopter Society, Fairfax

    Google Scholar 

  32. Sadeghifar M, Bagheri M, Jafari A (2010) Multiobjective optimization of orthogonally stiffened cylindrical shells for minimum weight and maximum axial buckling load. Thin Wall Struct 48(12):979–988

    Article  Google Scholar 

  33. Bagheri M, Jafari A, Sadeghifar M (2011) A genetic algorithm optimization of ring-stiffened cylindrical shells for axial and radial buckling loads. Arch Appl Mech 81(11):1639–1649

    Article  Google Scholar 

  34. Rikards R, Abramovich H, Auzins J, Korjakins A, Ozolinsh O, Kalnins K, Green T (2004) Surrogate models for optimum design of stiffened composite shells. Compos Struct 63(2):243–251

    Article  Google Scholar 

  35. Li S, Xu Y, Zhang J (2006) Neural network response surface optimization design for composite stiffened structures. Chin J Mech Eng 42(11):115–119

    Article  Google Scholar 

  36. Zhang Z, Yao W, Liu K (2008) Configuration optimization method for metallic stiffened panel structure based on updated Kriging model. J Nanjing Univ Aeronaut Astronaut 40(4):497–500

    Google Scholar 

  37. Lanzi L, Giavotto V (2006) Post-buckling optimization of composite stiffened panels: computations and experiments. Compos Struct 73(2):208–220

    Article  Google Scholar 

  38. Ambur DR, Rehfield LW (1993) Effect of stiffness characteristics on the response of composite grid-stiffened structures. J Aircraft 30(4):541–546

    Article  Google Scholar 

  39. Ray C, Satsangi S (1996) Finite element analysis of laminated hat-stiffened plates. J Reinf Plast Compos 15(12):1174–1193

    Article  Google Scholar 

  40. Chen Y, Gibson RF (2003) Analytical and experimental studies of composite isogrid structures with integral passive damping. Mech Adv Mater Struc 10(2):127–143

    Article  Google Scholar 

  41. Wodesenbet E, Kidane S, Pang SS (2003) Optimization for buckling loads of grid stiffened composite panels. Compos Struct 60(2):159–169

    Article  Google Scholar 

  42. Chen H-J, Tsai SW (1996) Analysis and optimum design of composite grid structures. J Compos Mater 30(4):503–534

    Article  Google Scholar 

  43. Dokainish M, Subbaraj K (1989) A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods. Comput Struct 32(6):1371–1386

    Article  Google Scholar 

  44. Kim TD (1999) Fabrication and testing of composite isogrid stiffened cylinder. Compos Struct 45(1):1–6

    Article  Google Scholar 

  45. Kim TD (2000) Fabrication and testing of thin composite isogrid stiffened panel. Compos Struct 49(1):21–25

    Article  Google Scholar 

  46. Fan HL, Fang DN (2008) Anisotropic mechanical properties of lattice grid composites. J Compos Mater 42(23):2445–2460

    Article  Google Scholar 

  47. Shi S, Sun Z, Ren M, Chen H, Hu X (2013) Buckling resistance of grid-stiffened carbon-fiber thin-shell structures. Compos Part B Eng 45(1):888–896

    Article  Google Scholar 

  48. He J, Ren M, Sun S, Huang Q, Sun X (2011) Failure prediction on advanced grid stiffened composite cylinder under axial compression. Compos Struct 93(7):1939–1946

    Article  Google Scholar 

  49. Fan HL, Yang W, Chao ZM (2007) Microwave absorbing composite lattice grids. Compos Sci Technol 67(15–16):3472–3479

    Article  Google Scholar 

  50. Fan H, Yang L, Sun F, Fang D (2013) Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites. Compos Part A Appl Sci Manuf 52:118–125. doi:10.1016/j.compositesa.2013.04.013

    Article  Google Scholar 

  51. Fan HL, Meng FH, Yang W (2007) Sandwich panels with Kagome lattice cores reinforced by carbon fibers. Compos Struct 81(4):533–539

    Article  Google Scholar 

  52. Liu X, Jiang J, Chen N, Feng X (2009) Effect of manufacturing parameters on the tensile properties and yarn damage of glass fiber warp-knitted net preforms. J Ind Text 38(1):233–249

    Article  Google Scholar 

  53. Morozov EV, Lopatin AV (2011) Design and analysis of the composite lattice frame of a spacecraft solar array. Compos Struct 93(7):1640–1648

    Article  Google Scholar 

  54. Buragohain M, Velmurugan R (2011) Study of filament wound grid-stiffened composite cylindrical structures. Compos Struct 93(2):1031–1038

    Article  Google Scholar 

  55. Kere P, Lento J (2005) Design optimization of laminated composite structures using distributed grid resources. Compos Struct 71(3–4):435–438

    Article  Google Scholar 

  56. Bunakov V (1999) Design of axially compressed composite cylindrical shells with lattice stiffeners. In: Optimal design. Technomic Publishing, Lancaster, pp 207–246

    Google Scholar 

  57. Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J Appl Mech 18(1):31–38

    Google Scholar 

  58. Ochoa OO, Reddy JN (1992) Finite element analysis of composite laminates. In: Solid mechanics and its applications, vol 7. Springer, Netherlands, pp 37–109

    Google Scholar 

  59. Fan H, Jin F, Fang D (2009) Characterization of edge effects of composite lattice structures. Compos Sci Technol 69(11–12):1896–1903

    Article  Google Scholar 

  60. Kidane S, Li G, Helms J, Pang S-S, Woldesenbet E (2003) Buckling load analysis of grid stiffened composite cylinders. Compos Part B Eng 34(1):1–9

    Article  Google Scholar 

  61. Meink TE (1998) Composite grid vs. composite sandwich: a comparison based on payload shroud requirements. In: Aerospace conference, 1998 IEEE. IEEE, New York, pp 215–220

    Google Scholar 

  62. Wegner PM, Ganley JM, Huynrechts S, Meink TE (2000) Advanced grid stiffened composite payload shroud for the OSP launch vehicle. In: Aerospace conference proceedings, 2000. IEEE, New York, pp 359–365

    Google Scholar 

  63. Vavilov VP, Budadin ON, Kulkov AA (2015) Infrared thermographic evaluation of large composite grid parts subjected to axial loading. Polymer Testing 41:55–62

    Article  Google Scholar 

  64. Wegner PM, Ganley JM, Huynrechts SM, Meink TE (2000) Advanced grid stiffened composite payload shroud for the OSP launch vehicle. In: Aerospace conference proceedings, 2000, vol 354. IEEE, New York, pp 359–365

    Google Scholar 

  65. Vasiliev V, Razin A (2006) Anisogrid composite lattice structures for spacecraft and aircraft applications. Compos Struct 76(1):182–189

    Article  Google Scholar 

  66. Zheng J, Zhao L, Fan H (2012) Energy absorption mechanisms of hierarchical woven lattice composites. Compos Part B Eng 43(3):1516–1522

    Article  Google Scholar 

  67. Han D, Tsai SW (2003) Interlocked composite grids design and manufacturing[J]. J Compos Mater 37(4):287–316

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NSFC 11472077), Shanghai Natural Science Foundation of Shanghai Municipal Science and Technology Commission (13ZR1400500), and Fundamental Research Funds for the Central Universities (2232015D3-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanliang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Jiang, J., Chen, N., Geng, Y., Shao, H., Lin, F. (2017). Advanced Grid Structure-Reinforced Composites. In: Yang, Y., Yu, J., Xu, H., Sun, B. (eds) Porous lightweight composites reinforced with fibrous structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53804-3_6

Download citation

Publish with us

Policies and ethics