Skip to main content

Carbon Nanotube-Based Aerogels as Preformed Porous Fibrous Network for Reinforcing Lightweight Composites

  • Chapter
  • First Online:
Porous lightweight composites reinforced with fibrous structures

Abstract

Lightweight composites achieved by the incorporation of voids or pores are limited by their notoriously poor mechanical properties. Reinforcement of these composites by the incorporation of high aspect ratio nanofibers/tubes is challenging due to the difficulty and expense of efficiently dispersing the reinforcing elements in the desired matrix. Here, we present a method to fabricate preformed, porous fiber networks that can be infiltrated by the matrix of choice. First, we demonstrate the synthesis of mechanically robust, electrically conductive low-density carbon nanotube-based aerogels with macroscopic dimensions. The nanotube aerogels are prepared by the sol–gel polymerization of resorcinol with formaldehyde in an aqueous suspension containing a dispersion of highly purified single-walled carbon nanotubes. Subsequent drying and pyrolysis result in free-standing monoliths consisting of a random network of carbon nanotube bundles decorated and cross-linked by graphitic carbon nanoparticles. Such nanotube-based aerogels exhibit electrical conductivities improved by an order of magnitude compared to those of foams without nanotubes and elastic behavior up to compressive strains as large as ~80%. Finally, we show how these aerogels can be infiltrated by a wide range of matrix materials to form lightweight composites with enhanced mechanical and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  Google Scholar 

  2. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Article  Google Scholar 

  3. Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, Robertson J, Gleason KK (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51:2213–2237

    Article  Google Scholar 

  4. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584

    Article  Google Scholar 

  5. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17:1186–1191

    Article  Google Scholar 

  6. Chen J, Ramasubramaniam R, Xue C, Liu H (2006) A versatile, molecular engineering approach to simultaneously enhanced, multifunctional carbon-nanotube-polymer composites. Adv Funct Mater 16:114–119

    Article  Google Scholar 

  7. Du FM, Guthy C, Kashiwagi T, Fischer JE, Winey KI (2006) An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J Polym Sci B Polym Phys 44:1513–1519

    Article  Google Scholar 

  8. Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40:2417–2421

    Article  Google Scholar 

  9. Winey KI, Kashiwagi T, Mu MF (2007) Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 32:348–353

    Article  Google Scholar 

  10. Mathur RB, Pande S, Singh BP, Dhami TL (2008) Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym Compos 29:717–727

    Article  Google Scholar 

  11. Luo C, Zuo X, Wang L, Wang E, Song S, Wang J, Wang J, Fan C, Cao Y (2008) Flexible carbon nanotube-polymer composite films with high conductivity and superhydrophobicity made by solution process. Nano Lett 8:4454–4458

    Article  Google Scholar 

  12. Ramasubramaniam R, Chen J, Liu HY (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83:2928–2930

    Article  Google Scholar 

  13. Sankapal BR, Setyowati K, Chen J, Liu H (2007) Electrical properties of air-stable, iodine-doped carbon-nanotube-polymer composites. Appl Phys Lett 91:173103

    Article  Google Scholar 

  14. Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM (2008) Continuous carbon nanotube reinforced composites. Nano Lett 8:2762–2766

    Article  Google Scholar 

  15. Worsley MA, Satcher JH, Baumann TF (2008) Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir 24:9763–9766

    Article  Google Scholar 

  16. Byrne MT, McNamee WP, Gun’ko YK (2008) Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites. Nanotechnology 19:415707

    Article  Google Scholar 

  17. Tchoul MN, Ford WT, Ha MLP, Chavez-Sumarriva I, Grady BP, Lolli G, Resasco DE, Arepalli S (2008) Composites of single-walled carbon nanotubes and polystyrene: preparation and electrical conductivity. Chem Mater 20:3120–3126

    Article  Google Scholar 

  18. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273

    Article  Google Scholar 

  19. Regev O, ElKati PNB, Loos J, Koning CE (2004) Preparation of conductive nanotube-polymer composites using latex technology. Adv Mater 16:248–251

    Article  Google Scholar 

  20. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108:11151–11159

    Article  Google Scholar 

  21. Rouse JH (2005) Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon nanotube/sol–gel composite formation. Langmuir 21:1055–1061

    Article  Google Scholar 

  22. Vaisman L, Marom G, Wagner HD (2006) Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv Funct Mater 16:357–363

    Article  Google Scholar 

  23. Grossiord N, Loos J, Regev O, Koning CE (2006) Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem Mater 18:1089–1099

    Article  Google Scholar 

  24. Nish A, Hwang JY, Doig J, Nicholas RJ (2007) Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotechnol 2:640–646

    Article  Google Scholar 

  25. Grossiord N, Loos J, Laake LV, Maugey M, Zakri C, Koning CE, Hart AJ (2008) High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv Funct Mater 18:3226–3234

    Article  Google Scholar 

  26. Yang Y, Gupta MC, Dudley KL (2007) Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology 18:345701

    Article  Google Scholar 

  27. Chen J, Xue CH, Ramasubramaniam R, Liu HY (2006) A new method for the preparation of stable carbon nanotube organogels. Carbon 44:2142–2146

    Article  Google Scholar 

  28. Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19:661–664

    Article  Google Scholar 

  29. Deck CP, Flowers J, McKee GSB, Vecchio K (2007) Mechanical behavior of ultralong multiwalled carbon nanotube mats. J Appl Phys 101:023512

    Article  Google Scholar 

  30. Cao AY, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310:1307–1310

    Article  Google Scholar 

  31. Leroy CM, Carn F, Backov R, Trinquecoste M, Delhaes P (2007) Multiwalled-carbon-nanotube-based carbon foams. Carbon 45:2317–2320

    Article  Google Scholar 

  32. Worsley MA, Kucheyev SO, Satcher JH, Hamza AV, Baumann TF (2009) Mechanically robust and electrically conductive carbon nanotube foams. Appl Phys Lett 94:073115

    Article  Google Scholar 

  33. Foygel M, Morris RD, Anez D, French S, Sobolev VL (2005) Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B 71:104201

    Article  Google Scholar 

  34. Bordjiba T, Mohamedi M, Dao LH (2007) Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. J Power Sources 172:991–998

    Article  Google Scholar 

  35. Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2002) Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett 2:25–28

    Article  Google Scholar 

  36. Huang WJ, Lin Y, Taylor S, Gaillard J, Rao AM, Sun YP (2002) Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett 2:231–234

    Article  Google Scholar 

  37. Matarredona O, Rhoads H, Li ZR, Harwell JH, Balzano L, Resasco DE (2003) Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J Phys Chem B 107:13357–13367

    Article  Google Scholar 

  38. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  Google Scholar 

  39. Grossiord N, Regev O, Loos J, Meuldijk J, Koning CE (2005) Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy. Anal Chem 77:5135–5139

    Article  Google Scholar 

  40. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  Google Scholar 

  41. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46

    Article  Google Scholar 

  42. Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett 87:161909

    Article  Google Scholar 

  43. Goldsmith BR, Coroneus JG, Khalap VR, Kane AA, Weiss GA, Collins PG (2007) Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 315:77–81

    Article  Google Scholar 

  44. Kruger M, Buitelaar MR, Nussbaumer T, Schonenberger C, Forro L (2001) Electrochemical carbon nanotube field-effect transistor. Appl Phys Lett 78:1291–1293

    Article  Google Scholar 

  45. Lee YS, Marzari N (2006) Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. Phys Rev Lett 97:116801

    Article  Google Scholar 

  46. Mannik J, Goldsmith BR, Kane A, Collins PG (2006) Chemically induced conductance switching in carbon nanotube circuits. Phys Rev Lett 97:016601

    Article  Google Scholar 

  47. Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR (1999) Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284:622–624

    Article  Google Scholar 

  48. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    Article  Google Scholar 

  49. Pekala RW, Alviso CT, Lemay JD (1990) Organic aerogels – microstructural dependence of mechanical-properties in compression. J Non-Cryst Solids 125:67–75

    Article  Google Scholar 

  50. Woignier T, Reynes J, Alaoui AH, Beurroies I, Phalippou J (1998) Different kinds of structure in aerogels: relationships with the mechanical properties. J Non-Cryst Solids 241:45–52

    Article  Google Scholar 

  51. Kucheyev SO, Baumann TF, Cox CA, Wang YM, Satcher JH, Hamza AV, Bradby JE (2006) Nanoengineering mechanically robust aerogels via control of foam morphology. Appl Phys Lett 89:041911

    Article  Google Scholar 

  52. Wang J, Angnes L, Tobias H, Roesner RA, Hong KC, Glass RS, Kong FM, Pekala RW (1993) Carbon aerogel composite electrodes. Anal Chem 65:2300–2303

    Article  Google Scholar 

  53. Halpin JC (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3:732–734

    Article  Google Scholar 

  54. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  55. Ding KL, Hu BJ, Xie Y, An GM, Tao RT, Zhang HY, Liu ZM (2009) A simple route to coat mesoporous SiO2 layer on carbon nanotubes. J Mater Chem 19:3725–3731

    Article  Google Scholar 

  56. Shin HS, Jang YS, Lee Y, Jung Y, Kim SB, Choi HC (2007) Photoinduced self-assembly of TiO2 and SiO2 nanoparticles on sidewalls of single-walled carbon nanotubes. Adv Mater 19:2873–2876

    Article  Google Scholar 

  57. Hernadi K, Ljubovic E, Seo JW, Forro L (2003) Synthesis of MWNT-based composite materials with inorganic coating. Acta Mater 51:1447–1452

    Article  Google Scholar 

  58. Fu Q, Lu CG, Liu J (2002) Selective coating of single wall carbon nanotubes with thin SiO2 layer. Nano Lett 2:329–332

    Article  Google Scholar 

  59. Gavalas VG, Andrews R, Bhattacharyya D, Bachas LG (2001) Carbon nanotube sol–gel composite materials. Nano Lett 1:719–721

    Article  Google Scholar 

  60. Lee SA, Hong SH, Kim DO, Han TH, Iijima S, Nam JD (2008) A mesoporous composite template composed of self-assembled silica nanotube and multi-walled carbon nanotube. Microporous Mesoporous Mater 111:292–299

    Article  Google Scholar 

  61. Guo SJ, Li J, Ren W, Wen D, Dong SJ, Wang EK (2009) Carbon nanotube/silica coaxial nanocable as a three-dimensional support for loading diverse ultra-high-density metal nanostructures: facile preparation and use as enhanced materials for electrochemical devices and SERS. Chem Mater 21:2247–2257

    Article  Google Scholar 

  62. Olek M, Busgen T, Hilgendorff M, Giersig M (2006) Quantum dot modified multiwall carbon nanotubes. J Phys Chem B 110:12901–12904

    Article  Google Scholar 

  63. Zhang M, Wu YP, Feng XZ, He XW, Chen LX, Zhang YK (2010) Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation. J Mater Chem 20:5835–5842

    Article  Google Scholar 

  64. Han W-Q, Zettl A (2003) Coating single-walled carbon nanotubes with tin oxide. Nano Lett 3:681–683

    Article  Google Scholar 

  65. Yang M, Kim D-H, Kim W-S, Kang TJ, Lee BY, Hong S, Kim YH, Hong SH (2010) H2 sensing characteristics of SnO2 coated single wall carbon nanotube network sensors. Nanotechnology 21:215501

    Article  Google Scholar 

  66. Gong J, Sun J, Chen Q (2008) Micromachined sol–gel carbon nanotube/SnO2 nanocomposite hydrogen sensor. Sens Actuators B Chem 130:829–835

    Article  Google Scholar 

  67. Hsu RS, Higgins D, Chen Z (2010) Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells. Nanotechnology 21:165705

    Article  Google Scholar 

  68. Du C, Chen M, Cao X, Yin G, Shi P (2009) A novel CNT@SnO2 core-sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochem Commun 11:496–498

    Article  Google Scholar 

  69. Du G, Zhong C, Zhang P, Guo Z, Chen Z, Liu H (2010) Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim Acta 55:2582–2586

    Article  Google Scholar 

  70. Zhu C-L, Zhang M-L, Qiao Y-J, Gao P, Chen Y-J (2010) High capacity and good cycling stability of multi-walled carbon nanotube/SnO2 core-shell structures as anode materials of lithium-ion batteries. Mater Res Bull 45:437–441

    Article  Google Scholar 

  71. Fu Y, Ma R, Shu Y, Cao Z, Ma X (2009) Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater Lett 63:1946–1948

    Article  Google Scholar 

  72. Chen G, Wang ZY, Xia DG (2008) One-pot synthesis of carbon nanotube@SnO2-Au coaxial nanocable for lithium-ion batteries with high rate capability. Chem Mater 20:6951–6956

    Article  Google Scholar 

  73. Chen Y-J, Zhu C-L, Xue X-Y, Shi X-L, Cao M-S (2008) High capacity and excellent cycling stability of single-walled carbon nanotube/SnO[sub 2] core-shell structures as Li-insertion materials. Appl Phys Lett 92:223101

    Article  Google Scholar 

  74. An GM, Ma WH, Sun ZY, Liu ZM, Han BX, Miao SD, Miao ZJ, Ding KL (2007) Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45:1795–1801

    Article  Google Scholar 

  75. Xie J, Varadan VK (2005) Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials. Mater Chem Phys 91:274–280

    Article  Google Scholar 

  76. Liu B, Zeng HC (2008) Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem Mater 20:2711–2718

    Article  Google Scholar 

  77. Yu HT, Quan X, Chen S, Zhao HM (2007) TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J Phys Chem C 111:12987–12991

    Article  Google Scholar 

  78. Wang WD, Serp P, Kalck P, Silva CG, Faria JL (2008) Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater Res Bull 43:958–967

    Article  Google Scholar 

  79. Orlanducci S, Sessa V, Terranova ML, Battiston GA, Battiston S, Gerbasi R (2006) Nanocrystalline TiO2 on single walled carbon nanotube arrays: towards the assembly of organized C/TiO2 nanosystems. Carbon 44:2839–2843

    Article  Google Scholar 

  80. Wang WD, Serp P, Kalck P, Faria JL (2005) Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J Mol Catal A Chem 235:194–199

    Article  Google Scholar 

  81. Yang YD, Qu LT, Dai LM, Kang TS, Durstock M (2007) Electrophoresis coating of titanium dioxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials. Adv Mater 19:1239–1243

    Article  Google Scholar 

  82. Wang D-W, Fang H-T, Li F, Chen Z-G, Zhong Q-S, Lu GQ, Cheng H-M (2008) Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv Funct Mater 18:3787–3793

    Article  Google Scholar 

  83. Mishra A, Banerjee S, Mohapatra SK, Graeve OA, Misra M (2008) Synthesis of carbon nanotube-TiO2 nanotubular material for reversible hydrogen storage. Nanotechnology 19:445607

    Article  Google Scholar 

  84. Baumann TF, Kucheyev SO, Gash AE, Satcher JH (2005) Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Adv Mater 17:1546–1548

    Article  Google Scholar 

  85. Worsley MA, Kucheyev SO, Kuntz JD, Hamza AV, Satcher JJH, Baumann TF (2009) Stiff and electrically conductive composites of carbon nanotube aerogels and polymers. J Mater Chem 19:3370–3372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus A. Worsley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Worsley, M.A., Lewicki, J.P., Baumann, T.F. (2017). Carbon Nanotube-Based Aerogels as Preformed Porous Fibrous Network for Reinforcing Lightweight Composites. In: Yang, Y., Yu, J., Xu, H., Sun, B. (eds) Porous lightweight composites reinforced with fibrous structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53804-3_10

Download citation

Publish with us

Policies and ethics