Skip to main content

DNA-Phänotypisierung

  • Chapter
  • First Online:
Forensik in der digitalen Welt

Zusammenfassung

Die Weiterentwicklung sensitiver DNA-Analysetechniken im Bereich der forensischen Molekulargenetik nimmt immer mehr an Bedeutung zu, insbesondere zur Aufklärung von cold cases. In Strafsachen ohne Täterhinweise aus der Bevölkerung und negativem Testergebnis beim Abgleich des DNA-Profils der Spur mit Dankbankeinträgen, ist es kaum möglich einen Täter oder Verdächtigen zu identifizieren. Dann wären Informationen zum Aussehen des Täters hilfreich, um gezielter fahnden zu können. Auch im Falle vermisster Personen oder vollständig skelettierten Leichen liegen in ausgewählten Fällen kaum Hinweise zur physischen Konstitution der Person bzw. zum Aussehen vor. Ähnlich wie mit einer Videosequenz können wir auf molekularer Ebene phänotypische Personeneigenschaften erlangen, um eine Art genetisches Phantombild zu erstellen. Entsprechende Informationen, welche auf molekularer Ebene erzeugt wurden, können z. B. in das Verfahren einer computergestützten Gesichtsweichteilrekonstruktion eingebunden werden, um das Aussehen von Täter- bzw. Opfer zu rekonstruieren. In diesem Kapitel wird das Verfahren der DNA-Phänotypisierung mit dessen Möglichkeiten und Grenzen vorgestellt, mit dem es gegenwärtig möglich ist Augen- oder Haarfarbe bis hin zu Körpergröße einer Person zu bestimmen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Als Chimärismusanalyse wird die quantitative Messung des Anteils an Spender- und Empfängerhämatopoese nach einer allogenen Stammzell- oder Knochenmarktransplantation bezeichnet.

  2. 2.

    Version 144, Release vom 8. Juni 2015.

  3. 3.

    Das HGDP-CEPH Human Genome Diversity Cell Line Panel ist eine Sammlung bestehend aus 1063 kultivierten Lymphozytenzelllinien von 1050 Personen aus 52 Populationen der gesamten Weltbevölkerung (Sitz in Paris).

  4. 4.

    CIEL*ab ist ein sogenanntes Tristimulusmodell, wobei in diesem Fall folgende Dimensionen einbezogen werden: Helligkeit (L*), Rot (a*), Gelb (b*). Das Farbmodell HSB nutzt zur Beschreibung von Farbnuancen drei Eigenschaften: Farbton (Hue), Sättigung (Saturation) und Helligkeit (Brightness).

  5. 5.

    MRI=Magnetic Resonance Imaging.

  6. 6.

    www.yhrd.org

  7. 7.

    Stand: Release Juli 2015.

  8. 8.

    Motiv des untersuchten molekularen Templates (Y-Chromosom, mtDNA), bestehend aus einer definierten Anzahl spezifischer STRs oder SNPs.

  9. 9.

    Haplotypen, die den gleichen genetischen Vorfahren vorweisen, werden einer Haplogruppe zugeordnet.

Literatur

  1. Alaeddini, R.: Forensic implications of pcr inhibition–a review. Forensic Sci Int Genet 6(3), 297–305 (2012). doi: 10.1016/j.fsigen.2011.08.006. http://dx.doi.org/10.1016/j.fsigen.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  2. Alaeddini, R., Walsh, S.J., Abbas, A.: Forensic implications of genetic analyses from degraded dna–a review. Forensic Science International Genetics 4(3), 148–157 (2010). doi: 10.1016/j.fsigen.2009.09.007. http://dx.doi.org/10.1016/j.fsigen.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  3. Aulchenko, Y.S., Struchalin, M.V., Belonogova, N.M., Axenovich, T.I., Weedon, M.N., Hofman, A., Uitterlinden, A.G., Kayser, M., Oostra, B.A., van Duijn, C.M., Janssens, A.C.J.W., Borodin, P.M.: Predicting human height by victorian and genomic methods. Eur J Hum Genet 17(8), 1070–1075 (2009). doi: 10.1038/ejhg.2009.5. http://dx.doi.org/10.1038/ejhg.2009.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berglund, E.C., Kiialainen, A., Syvänen, A.C.: Next-generation sequencing technologies and applications for human genetic history and forensics. Investig Genet 2, 23 (2011). doi: 10.1186/2041-2223-2-23. http://dx.doi.org/10.1186/2041-2223-2-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Børsting, C., Sanchez, J.J., Morling, N.: Application of snps in forensic casework. Molecular Forensics p. 91 (2007)

    Google Scholar 

  6. Børsting, C., Rockenbauer, E., Morling, N.: Validation of a single nucleotide polymorphism (snp) typing assay with 49 snps for forensic genetic testing in a laboratory accredited according to the iso 17025 standard. Forensic Science International Genetics 4(1), 34–42 (2009). doi: 10.1016/j.fsigen.2009.04.004. http://dx.doi.org/10.1016/j.fsigen.2009.04.004

    Article  PubMed  Google Scholar 

  7. Branicki, W., Liu, F., van Duijn, K., Draus-Barini, J., Pośpiech, E., Walsh, S., Kupiec, T., Wojas-Pelc, A., Kayser, M.: Model-based prediction of human hair color using dna variants. Hum Genet 129(4), 443–454 (2011). doi: 10.1007/s00439-010-0939-8. http://dx.doi.org/10.1007/s00439-010-0939-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Budowle, B., van Daal, A.: Forensically relevant snp classes. Biotechniques 44(5), 603–8, 610 (2008). doi: 10.2144/000112806. http://dx.doi.org/10.2144/000112806

    Article  CAS  PubMed  Google Scholar 

  9. Bustin, S., Benes, V., Nolan, T., Pfaffl, M.: Quantitative real-time rt-pcr–a perspective. Journal of molecular endocrinology 34(3), 597–601 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Butler, J., Coble, M., Vallone, P.: Strs vs snps: Thoughts on the future of forensic dna testing. Forensic Science, Medicine and Pathology 3 (2007)

    Google Scholar 

  11. Butler, J.M.: Advanced Topics in Forensic DNA Typing: Methodology: Methodology, Bd. Short Tandem Repeat (STR) Loci and Kits. Academic Press (2011)

    Google Scholar 

  12. Carracedo, A., Lareu, M.: Development of new strs for forensic casework: criteria for selection, sequencing & population data and forensic validation. In: Proceedings—the Ninth International Symposium on Human Identification, S. 89–107 (1998)

    Google Scholar 

  13. Claes, P., Liberton, D.K., Daniels, K., Rosana, K.M., Quillen, E.E., Pearson, L.N., McEvoy, B., Bauchet, M., Zaidi, A.A., Yao, W., Tang, H., Barsh, G.S., Absher, D.M., Puts, D.A., Rocha, J., Beleza, S., Pereira, R.W., Baynam, G., Suetens, P., Vandermeulen, D., Wagner, J.K., Boster, J.S., Shriver, M.D.: Modeling 3d facial shape from dna. PLoS Genet 10(3), e1004,224 (2014). doi: 10.1371/journal.pgen.1004224. http://dx.doi.org/10.1371/journal.pgen.1004224

    Article  Google Scholar 

  14. Commo, S., Wakamatsu, K., Lozano, I., Panhard, S., Loussouarn, G., Bernard, B.A., Ito, S.: Age-dependent changes in eumelanin composition in hairs of various ethnic origins. Int J Cosmet Sci 34(1), 102–107 (2012). doi: 10.1111/j.1468-2494.2011.00691.x. http://dx.doi.org/10.1111/j.1468-2494.2011.00691.x

    Article  CAS  PubMed  Google Scholar 

  15. da Costa Moraes, C.A., Dias, P.E.M., Melani, R.F.H.: Demonstration of protocol for computer-aided forensic facial reconstruction with free software and photogrammetry. Journal of Research in Dentistry 2(1), p–77 (2014)

    Article  Google Scholar 

  16. Davoren, J., Vanek, D., Konjhodzić, R., Crews, J., Huffine, E., Parsons, T.J.: Highly effective dna extraction method for nuclear short tandem repeat testing of skeletal remains from mass graves. Croat Med J 48(4), 478–485 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Deka, R., Shriver, M.D., Yu, L.M., Ferrell, R.E., Chakraborty, R.: Intra- and inter-population diversity at short tandem repeat loci in diverse populations of the world.q Electrophoresis 16(9), 1659–1664 (1995)

    Article  CAS  PubMed  Google Scholar 

  18. Dukes, M.J., Williams, A.L., Massey, C.M., Wojtkiewicz, P.W.: Technical note: Bone dna extraction and purification using silica-coated paramagnetic beads. Am J Phys Anthropol 148(3), 473–482 (2012). doi: 10.1002/ajpa.22057. http://dx.doi.org/10.1002/ajpa.22057

    Article  PubMed  Google Scholar 

  19. Fitzpatrick, T.B.: The validity and practicality of sun-reactive skin types i through vi. Arch Dermatol 124(6), 869–871 (1988)

    Article  CAS  PubMed  Google Scholar 

  20. Fondevila, M., Phillips, C., Santos, C., Freire Aradas, A., Vallone, P.M., Butler, J.M., Lareu, M.V., Carracedo, A.: Revision of the snpforid 34-plex forensic ancestry test: Assay enhancements, standard reference sample genotypes and extended population studies. Forensic Science International Genetics 7(1), 63–74 (2013). doi: 10.1016/j.fsigen.2012.06.007. http://dx.doi.org/10.1016/j.fsigen.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  21. Frudakis, T., Thomas, M., Gaskin, Z., Venkateswarlu, K., Chandra, K.S., Ginjupalli, S., Gunturi, S., Natrajan, S., Ponnuswamy, V.K., Ponnuswamy, K.N.: Sequences associated with human iris pigmentation. Genetics 165(4), 2071–2083 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gendiagnostik-Kommission: Richtlinie der gendiagnostik-kommission (geko) für die anforderungen an die durchführung genetischer analysen zur klärung der abstammung und an die qualifikation von ärztlichen und nichtärztlichen sachverständigen gemäß § 23 abs. 2 nr. 4 und nr. 2b gendg. Richtlinie. doi: DOI 10.1007/s00103-012-1575-3. Springer-Verlag Berlin Heidelberg 2013

    Google Scholar 

  23. Gettings, K.B., Lai, R., Johnson, J.L., Peck, M.A., Hart, J.A., Gordish-Dressman, H., Schanfield, M.S., Podini, D.S.: A 50-snp assay for biogeographic ancestry and phenotype prediction in the u.s. population. Forensic Science International Genetics 8(1), 101–108 (2014). doi: 10.1016/j.fsigen.2013.07.010. http://dx.doi.org/10.1016/j.fsigen.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  24. Green, R.L., Roinestad, I.C., Boland, C., Hennessy, L.K.: Developmental validation of the quantifilertm real-time pcr kits for the quantification of human nuclear dna samples. Journal of Forensic Sciences 50(4), 809–825 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Grimes, E.A., Noake, P.J., Dixon, L., Urquhart, A.: Sequence polymorphism in the human melanocortin 1 receptor gene as an indicator of the red hair phenotype. Forensic Science International 122(2-3), 124–129 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Han, J., Kraft, P., Nan, H., Guo, Q., Chen, C., Qureshi, A., Hankinson, S.E., Hu, F.B., Duffy, D.L., Zhao, Z.Z., Martin, N.G., Montgomery, G.W., Hayward, N.K., Thomas, G., Hoover, R.N., Chanock, S., Hunter, D.J.: A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet 4(5), e1000,074 (2008). doi: 10.1371/journal.pgen.1000074. http://dx.doi.org/10.1371/journal.pgen.1000074

    Article  Google Scholar 

  27. Jacobs, L.C., Wollstein, A., Lao, O., Hofman, A., Klaver, C.C., Uitterlinden, A.G., Nijsten, T., Kayser, M., Liu, F.: Comprehensive candidate gene study highlights ugt1a and bnc2 as new genes determining continuous skin color variation in europeans. Hum Genet 132(2), 147–158 (2013). doi: 10.1007/s00439-012-1232-9. http://dx.doi.org/10.1007/s00439-012-1232-9

    Article  CAS  PubMed  Google Scholar 

  28. Jakubowska, J., Maciejewska, A., Pawlowski, R.: Comparison of three methods of dna extraction from human bones with different degrees of degradation. Int J Legal Med 126(1), 173–178 (2012). doi: 10.1007/s00414-011-0590-5. http://dx.doi.org/10.1007/s00414-011-0590-5

    Article  PubMed  Google Scholar 

  29. Johnson, A.D., O’Donnell, C.J.: An open access database of genome-wide association results. BMC Med Genet 10, 6 (2009). doi: 10.1186/1471-2350-10-6. http://dx.doi.org/10.1186/1471-2350-10-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jombart, T., Devillard, S., Balloux, F.: Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11, 94 (2010). doi: 10.1186/1471-2156-11-94. http://dx.doi.org/10.1186/1471-2156-11-94

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kader, F., Ghai, M.: Dna methylation and application in forensic sciences. Forensic Science International 249, 255–265 (2015). doi: 10.1016/j.forsciint.2015.01.037. http://dx.doi.org/10.1016/j.forsciint.2015.01.037

    Article  CAS  PubMed  Google Scholar 

  32. Kayser, M., Schneider, P.M.: Dna-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations. Forensic Science International Genetics 3(3), 154–161 (2009). doi: 10.1016/j.fsigen.2009.01.012. http://dx.doi.org/10.1016/j.fsigen.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  33. Koops, B.J., Schellekens, M.: Forensic dna phenotyping: regulatory issues. Colum. Sci. & Tech. L. Rev. 9, 158–160 (2008)

    Google Scholar 

  34. Lei, S.F., Deng, F.Y., Xiao, S.M., Chen, X.D., Deng, H.W.: Association and haplotype analyses of the col1a2 and er-alpha gene polymorphisms with bone size and height in chinese. Bone 36(3), 533–541 (2005). doi: 10.1016/j.bone.2004.11.002. http://dx.doi.org/10.1016/j.bone.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  35. Lettre, G., Jackson, A.U., Gieger, C., Schumacher, F.R., Berndt, S.I., Sanna, S., Eyheramendy, S., Voight, B.F., Butler, J.L., Guiducci, C., Illig, T., Hackett, R., Heid, I.M., Jacobs, K.B., Lyssenko, V., Uda, M., D.G.I., F.U.S.I.O.N., K.O.R.A., Prostate, L.C., Trial, O.C.S., N.H.S., S.I.A., Boehnke, M., Chanock, S.J., Groop, L.C., Hu, F.B., Isomaa, B., Kraft, P., Peltonen, L., Salomaa, V., Schlessinger, D., Hunter, D.J., Hayes, R.B., Abecasis, G.R., Wichmann, H.E., Mohlke, K.L., Hirschhorn, J.N.: Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 40(5), 584–591 (2008). doi: 10.1038/ng.125. http://dx.doi.org/10.1038/ng.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, F., van der Lijn, F., Schurmann, C., Zhu, G., Chakravarty, M.M., Hysi, P.G., Wollstein, A., Lao, O., de Bruijne, M., Ikram, M.A., van der Lugt, A., Rivadeneira, F., Uitterlinden, A.G., Hofman, A., Niessen, W.J., Homuth, G., de Zubicaray, G., McMahon, K.L., Thompson, P.M., Daboul, A., Puls, R., Hegenscheid, K., Bevan, L., Pausova, Z., Medland, S.E., Montgomery, G.W., Wright, M.J., Wicking, C., Boehringer, S., Spector, T.D., Paus, T., Martin, N.G., Biffar, R., Kayser, M.: A genome-wide association study identifies five loci influencing facial morphology in europeans. PLoS Genet 8(9), e1002,932 (2012). doi: 10.1371/journal.pgen.1002932. http://dx.doi.org/10.1371/journal.pgen.1002932

    Article  Google Scholar 

  37. Liu, F., van Duijn, K., Vingerling, J.R., Hofman, A., Uitterlinden, A.G., Janssens, A.C.J.W., Kayser, M.: Eye color and the prediction of complex phenotypes from genotypes. Curr Biol 19(5), R192–R193 (2009). doi: 10.1016/j.cub.2009.01.027. http://dx.doi.org/10.1016/j.cub.2009.01.027

    Article  CAS  PubMed  Google Scholar 

  38. Loreille, O.M., Diegoli, T.M., Irwin, J.A., Coble, M.D., Parsons, T.J.: High efficiency dna extraction from bone by total demineralization. Forensic Science International Genetics 1(2), 191–195 (2007). doi: 10.1016/j.fsigen.2007.02.006. http://dx.doi.org/10.1016/j.fsigen.2007.02.006

    Article  PubMed  Google Scholar 

  39. Madea, B. (ed.): Praxis Rechtsmedizin: Befunderhebung, Rekonstruktion, Begutachtung, Bd. 2. Springer (2006)

    Google Scholar 

  40. Malkin, I., Ermakov, S., Kobyliansky, E., Livshits, G.: Strong association between polymorphisms in ankh locus and skeletal size traits. Hum Genet 120(1), 42–51 (2006). doi: 10.1007/s00439-006-0173-6. http://dx.doi.org/10.1007/s00439-006-0173-6

    Article  CAS  PubMed  Google Scholar 

  41. Maroñas, O., Phillips, C., Söchtig, J., Gomez-Tato, A., Cruz, R., Alvarez-Dios, J., de Cal, M.C., Ruiz, Y., Fondevila, M., Carracedo, n., Lareu, M.V.: Development of a forensic skin colour predictive test. Forensic Science International Genetics 13, 34–44 (2014). doi: 10.1016/j.fsigen.2014.06.017. http://dx.doi.org/10.1016/j.fsigen.2014.06.017

    Article  PubMed  Google Scholar 

  42. Mattsson, J., Uzunel, J., Tammik, L., Aschan, J., Ringde, O.: Leukemia lineage specific chimerism analysis is a sensitive predictor of relapse in patients with acute myeloid leukemia and myelodysplastic syndrome after allogeneic stem cell transplantation. Leukemia 15(12), 1976–1985 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. Meyer, E., Wiese, M., Bruchhaus, H., Claussen, M., Klein, A.: Extraction and amplification of authentic dna from ancient human remains. Forensic Science International 113(1-3), 87–90 (2000)

    Article  CAS  PubMed  Google Scholar 

  44. Mullis, K.B., et al.: The unusual origin of the polymerase chain reaction. Scientific American 262(4), 56–61 (1990)

    Article  CAS  PubMed  Google Scholar 

  45. Niederstätter, H., Köchl, S., Grubwieser, P., Pavlic, M., Steinlechner, M., Parson, W.: A modular real-time pcr concept for determining the quantity and quality of human nuclear and mitochondrial dna. Forensic Science International Genetics 1(1), 29–34 (2007)

    Article  PubMed  Google Scholar 

  46. Phillips, C., Fernandez-Formoso, L., Garcia-Magariños, M., Porras, L., Tvedebrink, T., Amigo, J., Fondevila, M., Gomez-Tato, A., Alvarez-Dios, J., Freire-Aradas, A., Gomez-Carballa, A., Mosquera-Miguel, A., Carracedo, A., Lareu, M.V.: Analysis of global variability in 15 established and 5 new european standard set (ess) strs using the ceph human genome diversity panel. Forensic Science International Genetics 5(3), 155–169 (2011). doi: 10.1016/j.fsigen.2010.02.003. http://dx.doi.org/10.1016/j.fsigen.2010.02.003

    CAS  Google Scholar 

  47. Pośpiech, E., Wojas-Pelc, A., Walsh, S., Liu, F., Maeda, H., Ishikawa, T., Skowron, M., Kayser, M., Branicki, W.: The common occurrence of epistasis in the determination of human pigmentation and its impact on dna-based pigmentation phenotype prediction. Forensic Science International Genetics 11, 64–72 (2014). doi: 10.1016/j.fsigen.2014.01.012. http://dx.doi.org/10.1016/j.fsigen.2014.01.012

    Article  PubMed  Google Scholar 

  48. Prinz, M., Carracedo, A., Mayr, W.R., Morling, N., Parsons, T.J., Sajantila, A., Scheithauer, R., Schmitter, H., Schneider, P.M.,  , I.S.f.F.G.: Dna commission of the international society for forensic genetics (isfg): recommendations regarding the role of forensic genetics for disaster victim identification (dvi). Forensic Science International Genetics 1(1), 3–12 (2007)

    Article  CAS  PubMed  Google Scholar 

  49. Putkonen, M.T., Palo, J.U., Cano, J.M., Hedman, M., Sajantila, A.: Factors affecting the str amplification success in poorly preserved bone samples. Investig Genet 1(1), 9 (2010). doi: 10.1186/2041-2223-1-9. http://dx.doi.org/10.1186/2041-2223-1-9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rebbeck, T.R., Kanetsky, P.A., Walker, A.H., Holmes, R., Halpern, A.C., Schuchter, L.M., Elder, D.E., Guerry, D.: P gene as an inherited biomarker of human eye color. Cancer Epidemiol Biomarkers Prev 11(8), 782–784 (2002)

    CAS  PubMed  Google Scholar 

  51. Rees, J.L.: Genetics of hair and skin color. Annu Rev Genet 37, 67–90 (2003). doi: 10.1146/annurev.genet.37.110801.143233. http://dx.doi.org/10.1146/annurev.genet.37.110801.143233

    Article  CAS  PubMed  Google Scholar 

  52. Ruiz, Y., Phillips, C., Gomez-Tato, A., Alvarez-Dios, J., Casares de Cal, M., Cruz, R., Maroñas, O., Söchtig, J., Fondevila, M., Rodriguez-Cid, M.J., Carracedo, A., Lareu, M.V.: Further development of forensic eye color predictive tests. Forensic Science International Genetics 7(1), 28–40 (2013). doi: 10.1016/j.fsigen.2012.05.009. http://dx.doi.org/10.1016/j.fsigen.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  53. Sanchez, J., Phillips, C., Børsting, C., Balogh, K., Bogus, M., Fondevila, M., Harrison, C., Musgrave-Brown, E., Salas, A., Syndercombe-Court, D., Schneider, P., Carracedo, A., Morling, N.: A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27 (2006)

    Google Scholar 

  54. Scheible, M., Loreille, O., Just, R., Irwin, J.: Short tandem repeat typing on the 454 platform: strategies and considerations for targeted sequencing of common forensic markers. Forensic Science International Genetics 12, 107–119 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. Schmidt, D., Hummel, S.: Biologische Spurenkunde, Bd. 1 Kriminalbiologie. Springer-Verlag Berlin Heidelberg (2007)

    Google Scholar 

  56. Shahrom, A.W., Vanezis, P., Chapman, R.C., Gonzales, A., Blenkinsop, C., Rossi, M.L.: Techniques in facial identification: computer-aided facial reconstruction using a laser scanner and video superimposition. Int J Legal Med 108(4), 194–200 (1996)

    Article  CAS  PubMed  Google Scholar 

  57. Sherry, S., Ward, M., Kholodov, M., Baker, J., Phan, L., Smigielski, E., Sirotkin, K.: dbsnp: the ncbi database of genetic variation. Nucleic Acids Res 1 (2001)

    Google Scholar 

  58. Stokowski, R.P., Pant, P.K., Dadd, T., Fereday, A., Hinds, D.A., Jarman, C., Filsell, W., Ginger, R.S., Green, M.R., van der Ouderaa, F.J., et al.: A genomewide association study of skin pigmentation in a south asian population. The American Journal of Human Genetics 81(6), 1119–1132 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sturm, R.A., Duffy, D.L., Box, N.F., Newton, R.A., Shepherd, A.G., Chen, W., Marks, L.H., Leonard, J.H., Martin, N.G.: Genetic association and cellular function of mc1r variant alleles in human pigmentation. Ann N Y Acad Sci 994, 348–358 (2003)

    Article  CAS  PubMed  Google Scholar 

  60. Sulem, P., Gudbjartsson, D.F., Stacey, S.N., Helgason, A., Rafnar, T., Magnusson, K.P., Manolescu, A., Karason, A., Palsson, A., Thorleifsson, G., Jakobsdottir, M., Steinberg, S., Pálsson, S., Jonasson, F., Sigurgeirsson, B., Thorisdottir, K., Ragnarsson, R., Benediktsdottir, K.R., Aben, K.K., Kiemeney, L.A., Olafsson, J.H., Gulcher, J., Kong, A., Thorsteinsdottir, U., Stefansson, K.: Genetic determinants of hair, eye and skin pigmentation in europeans. Nat Genet 39(12), 1443–1452 (2007). doi: 10.1038/ng.2007.13. http://dx.doi.org/10.1038/ng.2007.13

    Article  CAS  Google Scholar 

  61. Tryka, K.A., Hao, L., Sturcke, A., Jin, Y., Wang, Z.Y., Ziyabari, L., Lee, M., Popova, N., Sharopova, N., Kimura, M., Feolo, M.: Ncbi’s database of genotypes and phenotypes: dbgap. Nucleic Acids Res 42(Database issue), D975–D979 (2014). doi: 10.1093/nar/gkt1211. http://dx.doi.org/10.1093/nar/gkt1211

  62. Valenzuela, R.K., Henderson, M.S., Walsh, M.H., Garrison, N.A., Kelch, J.T., Cohen-Barak, O., Erickson, D.T., John Meaney, F., Bruce Walsh, J., Cheng, K.C., Ito, S., Wakamatsu, K., Frudakis, T., Thomas, M., Brilliant, M.H.: Predicting phenotype from genotype: normal pigmentation. Journal of Forensic Sciences 55(2), 315–322 (2010). doi: 10.1111/j.1556-4029.2009.01317.x. http://dx.doi.org/10.1111/j.1556-4029.2009.01317.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vanezis, P., Blowes, R.W., Linney, A.D., Tan, A.C., Richards, R., Neave, R.: Application of 3-d computer graphics for facial reconstruction and comparison with sculpting techniques. Forensic Science International 42(1-2), 69–84 (1989)

    Article  CAS  PubMed  Google Scholar 

  64. Wagner, J.K., Jovel, C., Norton, H.L., Parra, E.J., Shriver, M.D.: Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry. Pigment Cell Res 15(5), 379–384 (2002)

    Article  PubMed  Google Scholar 

  65. Walsh, S.: test. Forensic Science International Genetics 5, 170–180 (2011)

    Article  CAS  PubMed  Google Scholar 

  66. Walsh, S., Chaitanya, L., Clarisse, L., Wirken, L., Draus-Barini, J., Kovatsi, L., Maeda, H., Ishikawa, T., Sijen, T., de Knijff, P., Branicki, W., Liu, F., Kayser, M.: Developmental validation of the hirisplex system: Dna-based eye and hair colour prediction for forensic and anthropological usage. Forensic Science International Genetics 9, 150–161 (2014). doi: 10.1016/j.fsigen.2013.12.006. http://dx.doi.org/10.1016/j.fsigen.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  67. Walsh, S., Liu, F., Ballantyne, K.N., van Oven, M., Lao, O., Kayser, M.: Irisplex: a sensitive dna tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Science International Genetics 5(3), 170–180 (2011)

    Article  CAS  PubMed  Google Scholar 

  68. Walsh, S., Liu, F., Wollstein, A., Kovatsi, L., Ralf, A., Kosiniak-Kamysz, A., Branicki, W., Kayser, M.: The hirisplex system for simultaneous prediction of hair and eye colour from dna. Forensic Science International Genetics 7(1), 98–115 (2013). doi: 10.1016/j.fsigen.2012.07.005. http://dx.doi.org/10.1016/j.fsigen.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  69. Walsh, S., Wollstein, A., Liu, F., Chakravarthy, U., Rahu, M., Seland, J.H., Soubrane, G., Tomazzoli, L., Topouzis, F., Vingerling, J.R., Vioque, J., Fletcher, A.E., Ballantyne, K.N., Kayser, M.: Dna-based eye colour prediction across europe with the irisplex system. Forensic Sci Int Genet 6(3), 330–340 (2012). doi: 10.1016/j.fsigen.2011.07.009. http://dx.doi.org/10.1016/j.fsigen.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  70. Weatherall, I.L., Coombs, B.D.: Skin color measurements in terms of cielab color space values. J Invest Dermatol 99(4), 468–473 (1992)

    Article  CAS  PubMed  Google Scholar 

  71. Weedon, M.N., Lango, H., Lindgren, C.M., Wallace, C., Evans, D.M., Mangino, M., Freathy, R.M., Perry, J.R.B., Stevens, S., Hall, A.S., andere: Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 40(5), 575–583 (2008). doi: 10.1038/ng.121. http://dx.doi.org/10.1038/ng.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Willuweit, S., Roewer, L.: The new y chromosome haplotype reference database. Forensic Science International Genetics 15, 43–48 (2015). doi: 10.1016/j.fsigen.2014.11.024. http://dx.doi.org/10.1016/j.fsigen.2014.11.024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Pflugbeil M. Sc. Molekularbiologie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Pflugbeil, AM., Thiele, K., Labudde, D. (2017). DNA-Phänotypisierung. In: Labudde, D., Spranger, M. (eds) Forensik in der digitalen Welt. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53801-2_4

Download citation

Publish with us

Policies and ethics