Skip to main content

The Biomechanical Function of the Menisci

  • Chapter
  • First Online:
Book cover The Menisci

Abstract

This chapter focuses on the biomechanical function of the medial and lateral menisci, which serve a variety of functions in the knee due to their viscoelastic material properties and tissue composition. They have a large collagenous component mainly in the form of radial tie fibres and circumferential collagenous bundles. Tie fibres help to anchor the stronger circumferential fibres and resist radial strains, whereas the circumferential fibres act primarily to distribute and resist tensile strains. Furthermore, menisci maintain their shape under compressive loads due to their large water component and low permeability. This allows for desirable load distribution within the knee joint to achieve congruency between the femur and tibia, resulting in increased contact areas and lower contact stresses on articular cartilage. The shape and attachments of the menisci allow unique mobility throughout a normal range of knee motion, which aid in joint stability and accommodates the large range of motion at the knee joint. Additional functions include lubrication, nutrition, and proprioception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wirth CJ. The meniscus—structure, morphology and function. Knee. 1994;1(3):171–2.

    Article  Google Scholar 

  2. Tissakht M, Ahmed AM. Tensile stress-strain characteristics of the human meniscal material. J Biomech. 1995;28(4):411–22.

    Article  CAS  PubMed  Google Scholar 

  3. Djurasovic M, Aldridge JW, Grumbles R, Rosenwasser MP, Howell D, Ratcliffe A. Knee joint immobilization decreases aggrecan gene expression in the meniscus. Am J Sports Med. 1998;26(3):460–6.

    Article  CAS  PubMed  Google Scholar 

  4. Fox AJ, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin Anat. 2015;28(2):269–87.

    Article  PubMed  Google Scholar 

  5. Sweigart MA, Zhu CF, Burt DM, DeHoll PD, Agrawal CM, Clanton TO, et al. Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann Biomed Eng. 2004;32(11):1569–79.

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt TA, Gastelum NS, Nguyen QT, Schumacher BL, Sah RL. Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum. 2007;56(3):882–91.

    Article  CAS  PubMed  Google Scholar 

  7. Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC. Material properties of the normal medial bovine meniscus. J Orthop Res. 1989;7(6):771–82.

    Article  CAS  PubMed  Google Scholar 

  8. Joshi MD, Suh JK, Marui T, Woo SL. Interspecies variation of compressive biomechanical properties of the meniscus. J Biomed Mater Res. 1995;29(7):823–8.

    Article  CAS  PubMed  Google Scholar 

  9. Gabrion A, Aimedieu P, Laya Z, Havet E, Mertl P, Grebe R, et al. Relationship between ultrastructure and biomechanical properties of the knee meniscus. Surg Radiol Anat. 2005;27(6):507–10.

    Article  CAS  PubMed  Google Scholar 

  10. Chia HN, Hull ML. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate. J Orthop Res. 2008;26(7):951–6.

    Article  PubMed  Google Scholar 

  11. Bursac P, Arnoczky S, York A. Dynamic compressive behavior of human meniscus correlates with its extra-cellular matrix composition. Biorheology. 2009;46(3):227–37.

    CAS  PubMed  Google Scholar 

  12. Bullough PG, Munuera L, Murphy J, Weinstein AM. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br. 1970;52(3):564–7.

    CAS  PubMed  Google Scholar 

  13. Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anat Embryol (Berl). 1998;197(4):317–24.

    Article  CAS  Google Scholar 

  14. Schumacher BL, Schmidt TA, Voegtline MS, Chen AC, Sah RL. Proteoglycan 4 (PRG4) synthesis and immunolocalization in bovine meniscus. J Orthop Res. 2005;23(3):562–8.

    Article  CAS  PubMed  Google Scholar 

  15. Andrews S. Meniscus structure and function: University of Calgary; 2013.

    Google Scholar 

  16. Skaggs DL, Warden WH, Mow VC. Radial tie fibers influence the tensile properties of the bovine medial meniscus. J Orthop Res. 1994;12(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  17. Petersen W, Tillmann B. Funktionelle anatomie der menisken des kniegelenks kollagenfasertextur und biomechanik. Arthroskopie. 1998;11(3):133–5.

    Article  Google Scholar 

  18. Zhu W, Chern KY, Mow VC. Anisotropic viscoelastic shear properties of bovine meniscus. Clin Orthop Relat Res. 1994;306:34–45.

    Google Scholar 

  19. Shrive NG, O'Connor JJ, Goodfellow JW. Load-bearing in the knee joint. Clin Orthop Relat Res. 1978;131:279–87.

    Google Scholar 

  20. Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br. 1948;30B(4):664–70.

    CAS  PubMed  Google Scholar 

  21. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res. 1990;252:19–31.

    Google Scholar 

  22. McDermott ID, Masouros SD, Amis AA. Biomechanics of the menisci of the knee. Curr Orthop. 2008;22(3):193–201.

    Article  Google Scholar 

  23. Spilker RL, Donzelli PS, Mow VC. A transversely isotropic biphasic finite element model of the meniscus. J Biomech. 1992;25(9):1027–45.

    Article  CAS  PubMed  Google Scholar 

  24. Mow VC, Kuei S, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng. 1980;102(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  25. Favenesi J, Shaffer J, Mow V. Biphasic mechanical properties of knee meniscus. Trans Orthop Res Soc. 1983;8:57.

    Google Scholar 

  26. Hacker S, Woo S, Wayne J, Kwan M. Compressive properties of the human meniscus. Trans Annu Meet Orthop Res Soc. 1992;627

    Google Scholar 

  27. Kummer B. 38. Anatomie und Biomechanik des Kniegelenksmeniscus. Langenbecks Arch Chir. 1987;372(1):241–6.

    Article  CAS  PubMed  Google Scholar 

  28. Krause WR, Pope MH, Johnson RJ, Wilder DG. Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am. 1976;58(5):599–604.

    Article  CAS  PubMed  Google Scholar 

  29. Voloshin AS, Wosk J. Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng. 1983;5(2):157–61.

    Article  CAS  PubMed  Google Scholar 

  30. Assimakopoulos AP, Katonis PG, Agapitos MV, Exarchou EI. The innervation of the human meniscus. Clin Orthop Relat Res. 1992;275:232–6.

    Google Scholar 

  31. Levy IM, Torzilli PA, Gould JD, Warren RF. The effect of lateral meniscectomy on motion of the knee. J Bone Joint Surg Am. 1989;71(3):401–6.

    Article  CAS  PubMed  Google Scholar 

  32. Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am. 1982;64(6):883–8.

    Article  CAS  PubMed  Google Scholar 

  33. Jones RS, Keene GC, Learmonth DJ, Bickerstaff D, Nawana NS, Costi JJ, et al. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech (Bristol, Avon). 1996;11(5):295–300.

    Article  Google Scholar 

  34. Burke D. In vitro measurement of static pressure distribution in synovial joints. Part I: tibial surface of the knee. J Biomech Eng. 1983;105:216–25.

    Article  PubMed  Google Scholar 

  35. Noble J. Lesions of the menisci. Autopsy incidence in adults less than fifty-five years old. J Bone Joint Surg Am. 1977;59(4):480–3.

    Article  CAS  PubMed  Google Scholar 

  36. Mow V, Ratcliffe A, Chern K, Kelly M. Structure and function relationships of the menisci of the knee. New York: Raven Press, Ltd.; 1992. p. 37–57.

    Google Scholar 

  37. Viidik A. Functional properties of collagenous tissues. Int Rev Connect Tissue Res. 1973;6(267):127–215.

    Article  CAS  PubMed  Google Scholar 

  38. Butler DL, Grood ES, Noyes FR, Zernicke RF. Biomechanics of ligaments and tendons. Exerc Sport Sci Rev. 1978;6:125–81.

    CAS  PubMed  Google Scholar 

  39. Sweigart M, Athanasiou KA. Biomechanical characteristics of the normal medial and lateral porcine knee menisci. Proc Inst Mech Eng H J Eng Med. 2005;219(1):53–62.

    Article  CAS  Google Scholar 

  40. Lechner K, Hull ML, Howell SM. Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area? J Orthop Res. 2000;18(6):945–51.

    Article  CAS  PubMed  Google Scholar 

  41. Halewood C, Masouros S, Amis AA. Structure and Function of the Menisci. In Meniscal Allograft Transplantation - A Comprehensive Review, DJO Publications. 2015.

    Google Scholar 

  42. Aagaard H, Verdonk R. Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports. 1999;9(3):134–40.

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen AM, Levenston ME. Comparison of osmotic swelling influences on meniscal fibrocartilage and articular cartilage tissue mechanics in compression and shear. J Orthop Res. 2012;30(1):95–102.

    Article  PubMed  Google Scholar 

  44. Bloecker K, Englund M, Wirth W, Hudelmaier M, Burgkart R, Frobell RB, et al. Revision 1 size and position of the healthy meniscus, and its correlation with sex, height, weight, and bone area- a cross-sectional study. BMC Musculoskelet Disord. 2011;12:248.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am. 1983;65(4):538–47.

    Article  CAS  PubMed  Google Scholar 

  46. Seedhom BB, Dowson D, Wright V. Proceedings: functions of the menisci. A preliminary study. Ann Rheum Dis. 1974;33(1):111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res. 1975;109:184–92.

    Article  Google Scholar 

  48. Gilbert S, Chen T, Hutchinson ID, Choi D, Voigt C, Warren RF, et al. Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living. J Biomech. 2014;47(9):2006–12.

    Article  PubMed  Google Scholar 

  49. Sweigart MA, Athanasiou KA. Toward tissue engineering of the knee meniscus. Tissue Eng. 2001;7(2):111–29.

    Article  CAS  PubMed  Google Scholar 

  50. Dudhia J, McAlinden A, Muir P, Bayliss M. The meniscus—structure, composition, and pathology. In: Hazleman B, Riley G, Speed C, editors. Soft tissue rheumatology part 1 the science of soft tissue disorders. Oxford University Press; 2004. pp. 80–96.

    Google Scholar 

  51. Pena E, Calvo B, Martinez MA, Doblare M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006;39(9):1686–701.

    Article  CAS  PubMed  Google Scholar 

  52. Kettelkamp DB, Jacobs AW. Tibiofemoral contact area–determination and implications. J Bone Joint Surg Am. 1972;54(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  53. Maquet P, Van De Berg A, Simonet J. The weight-bearing surfaces of the femoro-tibial joint. Acta Orthop Belg. 1975;42:139–43.

    Google Scholar 

  54. Baratz ME, Fu FH, Mengato R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med. 1986;14(4):270–5.

    Article  CAS  PubMed  Google Scholar 

  55. Henning CE, Lynch MA, Clark JR. Vascularity for healing of meniscus repairs. Arthroscopy. 1987;3(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kurosawa H, Fukubayashi T, Nakajima H. Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res. 1980;149:283–90.

    Google Scholar 

  57. Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthritic knee joints. Acta Orthop Scand. 1980;51(6):871–9.

    Article  CAS  PubMed  Google Scholar 

  58. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res. 2000;18(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  59. Brantigan OC, Voshell AF. The mechanics of the ligaments and menisci of the knee joint. J Bone Joint Surg Am. 1941;23(1):44–66.

    Google Scholar 

  60. Fukubayashi T, Torzilli PA, Sherman MF, Warren RF. An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am. 1982;64(2):258–64.

    Article  CAS  PubMed  Google Scholar 

  61. Markolf KL, Mensch JS, Amstutz HC. Stiffness and laxity of the knee–the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am. 1976;58(5):583–94.

    Article  CAS  PubMed  Google Scholar 

  62. Oretorp N, Gillquist J, Liljedahl SO. Long term results of surgery for non-acute anteromedial rotatory instability of the knee. Acta Orthop Scand. 1979;50(3):329–36.

    Article  CAS  PubMed  Google Scholar 

  63. Shoemaker SC, Markolf KL. The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Joint Surg Am. 1986;68(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  64. Arnoczky SP, Warren RF, Spivak JM. Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg Am. 1988;70(8):1209–17.

    Article  CAS  PubMed  Google Scholar 

  65. Bargar WL, Moreland JR, Markolf KL, Shoemaker SC, Amstutz HC, Grant TT. In vivo stability testing of post-meniscectomy knees. Clin Orthop Relat Res. 1980;150:247–52.

    Google Scholar 

  66. Arno S, Hadley S, Campbell KA, Bell CP, Hall M, Beltran LS, et al. The effect of arthroscopic partial medial meniscectomy on tibiofemoral stability. Am J Sports Med. 2013;41(1):73–9.

    Article  PubMed  Google Scholar 

  67. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2010;38(8):1591–7.

    Article  PubMed  Google Scholar 

  68. Caterine S, Litchfield R, Johnson M, Chronik B, Getgood A. A cadaveric study of the anterolateral ligament: re-introducing the lateral capsular ligament. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3186–95.

    Article  PubMed  Google Scholar 

  69. Helfet A. Anatomy and mechanics of movement of the knee joint. In: Disorders of the knee. Philadelphia: JB Lippincott; 1974. p. 1–17.

    Google Scholar 

  70. Lerer D, Umans H, Hu M, Jones M. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol. 2004;33(10):569–74.

    Article  CAS  PubMed  Google Scholar 

  71. Thompson WO, Thaete FL, Fu FH, Dye SF. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med. 1991;19(3):210–5; discussion 5–6.

    Google Scholar 

  72. Renström P, Johnson R. Anatomy and biomechanics of the menisci. Clin Sports Med. 1990;9(3):523–38.

    PubMed  Google Scholar 

  73. Macconaill MA. The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J Anat. 1932;66(Pt 2):210–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Arnoczky S, Adams M, DeHaven K, Eyre D, Mow V, Kelly M, et al. Meniscus. In: Injury and repair of the musculoskeletal soft tissues, vol. 483537. Park Ridge: American Academy of Orthopaedic Surgeons; 1988.

    Google Scholar 

  75. MacConaill M. The movements of bones and joints 3. The synovial fluid and its assistants. J Bone Joint Surg Br. 1950;32(2):244–52.

    PubMed  Google Scholar 

  76. Akgun U, Kocaoglu B, Orhan EK, Baslo MB, Karahan M. Possible reflex pathway between medial meniscus and semimembranosus muscle: an experimental study in rabbits. Knee Surg Sports Traumatol Arthrosc. 2008;16(9):809–14.

    Article  PubMed  Google Scholar 

  77. Jerosch J, Prymka M, Castro WH. Proprioception of knee joints with a lesion of the medial meniscus. Acta Orthop Belg. 1996;62(1):41–5.

    CAS  PubMed  Google Scholar 

  78. Karahan M, Kocaoglu B, Cabukoglu C, Akgun U, Nuran R. Effect of partial medial meniscectomy on the proprioceptive function of the knee. Arch Orthop Trauma Surg. 2010;130(3):427–31.

    Article  PubMed  Google Scholar 

  79. Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998;193(Pt 2):161–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saygi B, Yildirim Y, Berker N, Ofluoglu D, Karadag-Saygi E, Karahan M. Evaluation of the neurosensory function of the medial meniscus in humans. Arthroscopy. 2005;21(12):1468–72.

    Article  PubMed  Google Scholar 

  81. Wilson AS, Legg PG, McNeur JC. Studies on the innervation of the medial meniscus in the human knee joint. Anat Rec. 1969;165(4):485–91.

    Article  CAS  PubMed  Google Scholar 

  82. Reider B, Arcand MA, Diehl LH, Mroczek K, Abulencia A, Stroud CC, et al. Proprioception of the knee before and after anterior cruciate ligament reconstruction. Arthroscopy. 2003;19(1):2–12.

    Article  PubMed  Google Scholar 

  83. Gray JC. Neural and vascular anatomy of the menisci of the human knee. J Orthop Sports Phys Ther. 1999;29(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  84. Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329–35.

    Article  CAS  PubMed  Google Scholar 

  85. Skinner HB, Barrack RL, Cook SD. Age-related decline in proprioception. Clin Orthop Relat Res. 1984;184:208–11.

    Google Scholar 

  86. Andrews S, Shrive N, Ronsky J. The shocking truth about meniscus. J Biomech. 2011;44(16):2737–40.

    Article  PubMed  Google Scholar 

  87. Alexander RM. Energy-saving mechanisms in walking and running. J Exp Biol. 1991;160:55–69.

    CAS  PubMed  Google Scholar 

  88. Gaugler M, Wirz D, Ronken S, Hafner M, Göpfert B, Friederich NF, et al. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):1141–6.

    Article  PubMed  Google Scholar 

  89. Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br. 1999;81(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  90. DePalma A. Diseases ofthe knee. Philadelphia/London/Montreal: JB Lippincott Company; 1954.

    Google Scholar 

  91. Shapeero LG, Dye SF, Lipton MJ, Gould RG, Galvin EG, Genant HK. Functional dynamics of the knee joint by ultrafast, cine-CT. Invest Radiol. 1988;23(2):118–23.

    Article  CAS  PubMed  Google Scholar 

  92. Bylski-Austrow DI, Ciarelli MJ, Kayner DC, Matthews LS, Goldstein SA. Displacements of the menisci under joint load: an in vitro study in human knees. J Biomech. 1994;27(4):421425–3431.

    Article  Google Scholar 

  93. Mordecai SC, Al-Hadithy N, Ware HE, Gupte CM. Treatment of meniscal tears: an evidence based approach. World J Orthop. 2014;5(3):233.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ode GE, Van Thiel GS, McArthur SA, Dishkin-Paset J, Leurgans SE, Shewman EF, et al. Effects of serial sectioning and repair of radial tears in the lateral meniscus. Am J Sports Med. 2012;40(8):1863–70.

    Article  PubMed  Google Scholar 

  95. Seedhom B, Hargreaves D. Transmission of the load in the knee joint with special reference to the role of the menisci part II: experimental results, discussion and conclusions. Eng Med. 1979;8(4):220–8.

    Article  Google Scholar 

  96. Harper KW, Helms CA, Lambert III HS, Higgins LD. Radial meniscal tears: significance, incidence, and MR appearance. Am J Roentgenol. 2005;185(6):1429–34.

    Article  Google Scholar 

  97. Griffith CJ, LaPrade RF, Fritts HM, Morgan PM. Posterior root avulsion fracture of the medial meniscus in an adolescent female patient with surgical reattachment. Am J Sports Med. 2008;36(4):789–92.

    Article  PubMed  Google Scholar 

  98. Kim J-H, Chung J-H, Lee D-H, Lee Y-S, Kim J-R, Ryu K-J. Arthroscopic suture anchor repair versus pullout suture repair in posterior root tear of the medial meniscus: a prospective comparison study. Arthroscopy. 2011;27(12):1644–53.

    Article  PubMed  Google Scholar 

  99. Bhatia S, LaPrade CM, Ellman MB, LaPrade RF. Meniscal root tears significance, diagnosis, and treatment. Am J Sports Med. 2014. doi:10.1177/0363546514524162

  100. Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus. J Bone Joint Surg Am. 2008;90(9):1922–31.

    Article  PubMed  Google Scholar 

  101. Marzo JM, Gurske-DePerio J. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications. Am J Sports Med. 2009;37(1):124–9.

    Article  PubMed  Google Scholar 

  102. Robertson D, Armfield D, Towers J, Irrgang J, Maloney W, Harner C. Meniscal root injury and spontaneous osteonecrosis of the knee. J Bone Joint Surg Br. 2009;91(2):190–5.

    Article  CAS  PubMed  Google Scholar 

  103. Sung JH, Ha JK, Lee DW, Seo WY, Kim JG. Meniscal extrusion and spontaneous osteonecrosis with root tear of medial meniscus: comparison with horizontal tear. Arthroscopy. 2013;29(4):726–32.

    Article  PubMed  Google Scholar 

  104. LaPrade CM, Jansson KS, Dornan G, Smith SD, Wijdicks CA, LaPrade RF. Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs. J Bone Joint Surg Am. 2014;96(6):471–9.

    Article  PubMed  Google Scholar 

  105. Schillhammer CK, Werner FW, Scuderi MG, Cannizzaro JP. Repair of lateral meniscus posterior horn detachment lesions a biomechanical evaluation. Am J Sports Med. 2012;40(11):2604–9.

    Article  PubMed  Google Scholar 

  106. Poh SY, Yew KS, Wong PL, Koh SB, Chia SL, Fook-Chong S, et al. Role of the anterior intermeniscal ligament in tibiofemoral contact mechanics during axial joint loading. Knee. 2012;19(2):135–9.

    Article  PubMed  Google Scholar 

  107. Nelson EW, LaPrade RF. The anterior intermeniscal ligament of the knee an anatomic study. Am J Sports Med. 2000;28(1):74–6.

    Article  CAS  PubMed  Google Scholar 

  108. Padalecki JR, Jansson KS, Smith SD, Dornan GJ, Pierce CM, Wijdicks CA, et al. Biomechanical consequences of a complete radial tear adjacent to the medial meniscus posterior root attachment site in situ pull-out repair restores derangement of joint mechanics. Am J Sports Med. 2014;42(3):699–707.

    Article  PubMed  Google Scholar 

  109. Ellman MB, LaPrade CM, Smith SD, Rasmussen MT, Engebretsen L, Wijdicks CA, et al. Structural properties of the meniscal roots. Am J Sports Med. 2014;42(8):1881–7.

    Article  PubMed  Google Scholar 

  110. Kopf S, Colvin AC, Muriuki M, Zhang X, Harner CD. Meniscal root suturing techniques: implications for root fixation. Am J Sports Med. 2011;39(10):2141–6.

    Article  PubMed  Google Scholar 

  111. Robinson JR, Bull AM, Thomas RR, Amis AA. The role of the medial collateral ligament and posteromedial capsule in controlling knee laxity. Am J Sports Med. 2006;34(11):1815–23.

    Article  PubMed  Google Scholar 

  112. Grood ES, Hefzy MS, Lindenfield TN. Factors affecting the region of most isometric femoral attachments Part I: the posterior cruciate ligament. Am J Sports Med. 1989;17(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  113. Gupte CM, Bull AM, Amis AA. A review of the function and biomechanics of the meniscofemoral ligaments. Arthroscopy. 2003;19(2):161–71.

    Article  PubMed  Google Scholar 

  114. Gupte CM, Bull AM, Thomas RD, Amis AA. The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. J Bone Joint Surg Br. 2003;85(5):765–73.

    PubMed  Google Scholar 

  115. Natsis K, Paraskevas G, Anastasopoulos N, Papamitsou T, Sioga A. Meniscofibular ligament: morphology and functional significance of a relatively unknown anatomical structure. Anat Res Int. 2012;2012:214784.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Getgood MPhil, MD, FRCS(Tr&Orth) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Caterine, S., Hourigan, M., Getgood, A. (2017). The Biomechanical Function of the Menisci. In: LaPrade, R., Arendt, E., Getgood, A., Faucett, S. (eds) The Menisci. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53792-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53792-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53791-6

  • Online ISBN: 978-3-662-53792-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics