Skip to main content

Introduction

  • Chapter
  • First Online:
Star Identification
  • 944 Accesses

Abstract

Navigation systems are vital and indispensable for spacecraft. The main task of a navigation system is to guide a spacecraft to its destination following predetermined routes with the required precision and within the given time. For this purpose, the system should provide accurate navigation parameters, including azimuth (i.e., horizontal attitude and course), velocity, position, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gan G, Qiu Z (2000) Navigation and positioning. National Defence Industry Press, Beijing

    Google Scholar 

  2. Zhang S, Sun J (eds) (1992) Strap-down navigation system. National Defence Industry Press, Beijing

    Google Scholar 

  3. Inglis SJ (1979) Planets, stars, and galaxies. Science Press, Beijing

    Google Scholar 

  4. Roth GD (1985) Astronomy: a handbook. Science Press, Beijing

    Google Scholar 

  5. Shen C, Sun G (1987) Celestial navigation. National Defence Industry Press, Beijing

    Google Scholar 

  6. SAO Star Catalog, http://tdc-www.harvard.edu/software/catalogs/sao.html

  7. Zhang G (2005) Machine vision. Science Press, Beijing

    Google Scholar 

  8. Fang J, Ning X, Tian Y (2006) Principles and methods of autonomous navigation of spacecraft. National Defence Industry Press, Beijing

    Google Scholar 

  9. Liebe CC (1995) Star trackers for attitude determination. IEEE Trans Aerosp Electron Syst 10(6):10–16

    Article  Google Scholar 

  10. Schmidt U (2005) ASTRO APS—the next generation Hi-Rel star tracker based on active pixel sensor technology. AIAA guidance, navigation, and control conference and exhibit, San Francisco, California, 15–18 Aug 2005. AIAA 2005-5925

    Google Scholar 

  11. Liebe CC, Dennison ED, Hancock B et al (1998) Active pixel sensor (APS) based star tracker. Aerospace conference proceedings (vol 1, pp 119–127). IEEE, Aspen, US. 21–28 March 1998

    Google Scholar 

  12. Liebe CC, Alkalai L, Domingo G et al (2002) Micro APS based star tracker. Aerospace conference proceedings (vol 5, pp 2285–2299). IEEE

    Google Scholar 

  13. Anderson DS (1991) Autonomous star sensing and pattern recognition for spacecraft attitude determination. Ph.D. Dissertation, Texas A&M University

    Google Scholar 

  14. Wei X (2004) A research on star identification methods and relevant technologies in star sensor (pp 1–14). Doctoral Thesis of Beijing University Aeronautics and Astronautics, Beijing

    Google Scholar 

  15. Yang J (2007) A research on star identification algorithm and RISC technology application (pp 1–17). Doctoral Thesis of Beijing University Aeronautics and Astronautics, Beijing

    Google Scholar 

  16. Padgett C, Kreutz-Delgado K, Udomkesmalee S (1997) Evaluation of star identification techniques. J Guid Control Dyn 22(2):259–267

    Article  MATH  Google Scholar 

  17. Padgett C, Kreutz-Delgado K (1997) A grid algorithm for autonomous star identification. IEEE Trans Aerosp Electron Syst 33(1):202–213

    Article  Google Scholar 

  18. Gottlieb DM (1978) In: Wertz JR (ed) Star identification techniques, spacecraft attitude determination and control (pp 257–266). The Netherlands

    Google Scholar 

  19. Birnbaum MM (1996) Spacecraft attitude control using star field trackers. Acta Astronaut 39(9–12):763–773

    Article  Google Scholar 

  20. Liebe CC (1992) Pattern recognition of star constellations for spacecraft applications. IEEE AES Mag 28(6):34–41

    Article  Google Scholar 

  21. Quine BM, Durrant-Whyte HF (1996) Rapid star pattern identification. SPIE 2739:351–360

    Google Scholar 

  22. Mortari D, Junkins J, Samaan M (2001) Lost-in-space pyramid algorithm for robust star pattern recognition. 24th annual AAS guidance and control conference, AAS 01–004

    Google Scholar 

  23. Samaan M, Mortari D, Junkins J (2001) Recursive mode star identification algorithms. AAS/AIAA space flight mechanics meeting, AAS 01-149

    Google Scholar 

  24. Scholl M (2019) Star field identification algorithm—Performance verification using simulation star fields. SPIE 1993:275–290

    Google Scholar 

  25. Kosik J (1991) Star pattern identification aboard an inertially stabilized spacecraft. J Guid Control Dyn 14(2):230–235

    Article  Google Scholar 

  26. Bezooijen RV (1989) Automated star pattern recognition. Ph.D. Dissertation, Stanford University

    Google Scholar 

  27. DeAntonio L, Udomkesmalee S, Alexander J et al (1949) Star-tracker based all-sky, autonomous attitude determination. SPIE 1993:204–215

    Google Scholar 

  28. Clouse D, Padgett C (2000) Small field-of-view star identification using Bayesian decision theory. IEEE Trans AES 36(2):773–783

    Google Scholar 

  29. Udomkesmalee S, Alexander J, Tolivar F (1994) Stochastic star identification. J Guid Control Dyn 17(6):1283–1286

    Article  MATH  Google Scholar 

  30. Kim H (2002) Novel methods for spacecraft attitude estimation. Ph.D. Dissertation, Texas A&M University

    Google Scholar 

  31. Lindsey C, Lindblad T (1997) A method for star identification using neural networks. SPIE 3077:471–478

    Google Scholar 

  32. Bardwell G (1995) On-board artificial neural network multi-star identification system for 3-axis attitude determination. Acta Astronaut 35:753–761

    Article  Google Scholar 

  33. Li Chunyan, Li Ke, Zhang Yunlong et al (2003) Star identification based on neural networks. Chin Sci Bull 48(9):892–895

    Article  Google Scholar 

  34. Paladugu L, Schoen M, Williams BG (2003) Intelligent techniques for star-pattern recognition. Proceedings of ASME, IMECE2003-42274

    Google Scholar 

  35. Li L, Zhang F, Lin T (2000) An all-sky autonomous star map identification algorithm based on genetic algorithm. Opto-Electron Eng 27(5):15–18

    Google Scholar 

  36. Quan W, Wang G, Fang J (2006) Improved star map identification algorithm based on Hausdorff distance. J Beijing Univ Aeronaut Astronaut 32(1):8–12

    MathSciNet  Google Scholar 

  37. Juang JN, Kim H, Junkins JL (2003) An efficient and robust singular value method for star pattern recognition and attitude determination. NASA Langley Research Center, NASA/TM-2003-212142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjun Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 National Defense Industry Press and Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zhang, G. (2017). Introduction. In: Star Identification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53783-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53783-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53781-7

  • Online ISBN: 978-3-662-53783-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics