Skip to main content

Diagnostic Immunopathology of Germ Cell Tumors

  • Chapter
  • First Online:
Book cover Pathology and Biology of Human Germ Cell Tumors

Abstract

This chapter reviews current data on diagnostic immunohistochemistry of germ cell tumors (GCT), analyzing stage-specific pluripotentiality markers as well as organ-specific ones. The genes and developmental role of each antibody are discussed, and a hands-on approach to the use of commercially available antibodies is provided.

The sequential expression of pluripotentiality markers represents a substantial advance in diagnosis, since it categorizes the developmental stage of the tumor which is of paramount importance in establishing not only a histologic diagnosis but the differentiation and pluripotency status. Both antibodies frequently used clinically and those employed mainly in research are analyzed.

The role of classical antibodies in GCT diagnosis is summarized, as well as a description of tissue specific markers useful in identifying areas of embryonal and somatic differentiation in seminoma, yolk sac tumors, and teratomas. The recent advances in the immunohistochemical profile of spermatocytic tumors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierce Jr GB, Midgley Jr AR, Ram JS, Feldman JD. Pariental yolk sac carcinoma: clue to the histogenesis of Riechert’s membrane of the mouse embryo. Am J Pathol. 1962;41:549–66.

    PubMed  PubMed Central  Google Scholar 

  2. Nakane PK, Pierce Jr GB. Enzyme-labeled antibodies for the light and electron microscopic localization of tissue antigens. J Cell Biol. 1967;33(2):307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ulbright TM, Tickoo SK, Berney DM, Srigley JR. Members of the IIiDUPG. Best practices recommendations in the application of immunohistochemistry in testicular tumors: report from the International Society of Urological Pathology consensus conference. Am J Surg Pathol. 2014;38(8):e50–9. doi:10.1097/PAS.0000000000000233.

    PubMed  Google Scholar 

  4. Rothschild G, Sottas CM, Kissel H, Agosti V, Manova K, Hardy MP, et al. A role for kit receptor signaling in Leydig cell steroidogenesis. Biol Reprod. 2003;69(3):925–32. doi:10.1095/biolreprod.102.014548.

    Article  CAS  PubMed  Google Scholar 

  5. Vandenbark GR, deCastro CM, Taylor H, Dew-Knight S, Kaufman RE. Cloning and structural analysis of the human c-kit gene. Oncogene. 1992;7(7):1259–66.

    CAS  PubMed  Google Scholar 

  6. Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol. 2005;13(3):205–20.

    Article  CAS  PubMed  Google Scholar 

  7. Ronnstrand L. Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci. 2004;61(19–20):2535–48. doi:10.1007/s00018-004-4189-6.

    Article  CAS  PubMed  Google Scholar 

  8. Syrris P, Malik NM, Murday VA, Patton MA, Carter ND, Hughes HE, et al. Three novel mutations of the proto-oncogene KIT cause human piebaldism. Am J Med Genet. 2000;95(1):79–81.

    Article  CAS  PubMed  Google Scholar 

  9. Søren Nielsen MV. NordiQC CD117 assessment run 26 2009. 2009. http://www.nordiqc.org/Run-26-B7/Assessment/assessment-26-CD117.htm.

  10. Novelli M, Rossi S, Rodriguez-Justo M, Taniere P, Seddon B, Toffolatti L, et al. DOG1 and CD117 are the antibodies of choice in the diagnosis of gastrointestinal stromal tumours. Histopathology. 2010;57(2):259–70. doi:10.1111/j.1365-2559.2010.03624.x.

    Article  PubMed  Google Scholar 

  11. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80. doi:10.1056/NEJMoa020461.

    Article  CAS  PubMed  Google Scholar 

  12. Einhorn LH, Brames MJ, Heinrich MC, Corless CL, Madani A. Phase II study of imatinib mesylate in chemotherapy refractory germ cell tumors expressing KIT. Am J Clin Oncol. 2006;29(1):12–3. doi:10.1097/01.coc.0000195086.47548.ef.

    Article  CAS  PubMed  Google Scholar 

  13. Pectasides D, Nikolaou M, Pectasides E, Koumarianou A, Valavanis C, Economopoulos T. Complete response after imatinib mesylate administration in a patient with chemoresistant stage IV seminoma. Anticancer Res. 2008;28(4C):2317–20.

    CAS  PubMed  Google Scholar 

  14. Mauduit C, Hamamah S, Benahmed M. Stem cell factor/c-kit system in spermatogenesis. Hum Reprod Update. 1999;5(5):535–45.

    Article  CAS  PubMed  Google Scholar 

  15. Schrans-Stassen BH, van de Kant HJ, de Rooij DG, van Pelt AM. Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology. 1999;140(12):5894–900. doi:10.1210/endo.140.12.7172.

    Article  CAS  PubMed  Google Scholar 

  16. Tuck AR, Robker RL, Norman RJ, Tilley WD, Hickey TE. Expression and localisation of c-kit and KITL in the adult human ovary. J Ovarian Res. 2015;8(1):31. doi:10.1186/s13048-015-0159-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lau SK, Weiss LM, Chu PG. D2-40 immunohistochemistry in the differential diagnosis of seminoma and embryonal carcinoma: a comparative immunohistochemical study with KIT (CD117) and CD30. Mod Pathol. 2007;20(3):320–5. doi:10.1038/modpathol.3800749.

    Article  CAS  PubMed  Google Scholar 

  18. Leroy X, Augusto D, Leteurtre E, Gosselin B. CD30 and CD117 (c-kit) used in combination are useful for distinguishing embryonal carcinoma from seminoma. J Histochem Cytochem: Off J Histochem Soc. 2002;50(2):283–5.

    Article  CAS  Google Scholar 

  19. Sever M, Jones TD, Roth LM, Karim FW, Zheng W, Michael H, et al. Expression of CD117 (c-kit) receptor in dysgerminoma of the ovary: diagnostic and therapeutic implications. Mod Pathol. 2005;18(11):1411–6. doi:10.1038/modpathol.3800463.

    Article  CAS  PubMed  Google Scholar 

  20. Lombardi M, Valli M, Brisigotti M, Rosai J. Spermatocytic seminoma: review of the literature and description of a new case of the anaplastic variant. Int J Surg Pathol. 2011;19(1):5–10. doi:10.1177/1066896910388645.

    PubMed  Google Scholar 

  21. Kraggerud SM, Berner A, Bryne M, Pettersen EO, Fossa SD. Spermatocytic seminoma as compared to classical seminoma: an immunohistochemical and DNA flow cytometric study. APMIS : Acta Pathologica Microbiologica et Immunologica Scandinavica. 1999;107(3):297–302.

    Article  CAS  Google Scholar 

  22. Guillaudeux T, Mattei MG, Depetris D. xx. In situ hybridization localizes the human OTF3 to chromosome 6p21.3→p22 and OTF3L to 12p13. Cytogenet Cell Genet. 1993;63:212–4.

    Article  CAS  PubMed  Google Scholar 

  23. Rijlaarsdam MA, van Herk HA, Gillis AJ, Stoop H, Jenster G, Martens J, et al. Specific detection of OCT3/4 isoform A/B/B1 expression in solid (germ cell) tumours and cell lines: confirmation of OCT3/4 specificity for germ cell tumours. Br J Cancer. 2011;105(6):854–63. doi:10.1038/bjc.2011.270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ono M, Kajitani T, Uchida H, Arase T, Oda H, Nishikawa-Uchida S et al. OCT4 expression in human uterine myometrial stem/progenitor cells. Hum Reprod. 2010;25(8):2059–2067. doi:deq163 [pii].

    Google Scholar 

  25. Cantz T, Key G, Bleidissel M, Gentile L, Han DW, Brenne A et al. Absence of OCT4 expression in somatic tumor cell lines. Stem Cells. 2008;26(3):692–697. doi:2007-0657 [pii] 1634/stemcells.2007-0657.

    Google Scholar 

  26. Mueller T, Luetzkendorf J, Nerger K, Schmoll HJ, Mueller LP. Analysis of OCT4 expression in an extended panel of human tumor cell lines from multiple entities and in human mesenchymal stem cells. Cell Mol Life Sci. 2009;66(3):495–503. doi:10.1007/s00018-008-8623-z.

    Article  CAS  PubMed  Google Scholar 

  27. Ruangpratheep C, Lohachittranond C, Poonpracha T, Punyarit P. OCT4 expression on a case of poorly differentiated (insular) carcinoma of the thyroid gland and minireview. J Med Assoc Thail. 2005;88(Suppl 3):S281–9.

    Google Scholar 

  28. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 2010;70(24):10433–10444. doi: 10.1158/0008-5472.CAN-10-2638. 70/24/10433 [pii].

  29. Chen Z, Xu WR, Qian H, Zhu W, Bu XF, Wang S, et al. Oct4, a novel marker for human gastric cancer. J Surg Oncol. 2009;99(7):414–9. doi:10.1002/jso.21270.

    Article  CAS  PubMed  Google Scholar 

  30. Saigusa S, Tanaka K, Toiyama Y, Yokoe T, Okugawa Y, Ioue Y, et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol. 2009;16(12):3488–98. doi:10.1245/s10434-009-0617-z.

    Article  PubMed  Google Scholar 

  31. Huang PZ, Lu CL, Li BK, Hong J, Huang L, Wang L et al. [OCT4 expression in hepatocellular carcinoma and its clinical significance]. Chin J Cancer. 2010;29(1):111–116. doi:1000-467X201001105 [pii].

    Google Scholar 

  32. Zhang X, Han B, Huang J, Zheng B, Geng Q, Aziz F et al. Prognostic significance of OCT4 expression in adenocarcinoma of the lung. Jpn J Clin Oncol. 2010;40(10):961–966. doi: 10.1093/jjco/hyq066. hyq066 [pii].

  33. Alexander RE, Cheng L, Grignon DJ, Idrees MT. Cytoplasmic OCT4 staining is a sensitive marker of neuroendocrine differentiation. Hum Pathol. 2014;45(1):27–32. doi:10.1016/j.humpath.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson RA, Fulton N, Cowan G, Coutts S, Saunders PT. Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Dev Biol. 2007;7:136. doi:1471-213X-7-136.

    Google Scholar 

  35. Kerr CL, Hill CM, Blumenthal PD, Gearhart JD. Expression of pluripotent stem cell markers in the human fetal testis. Stem Cells. 2008;26(2):412–21. doi:10.1634/stemcells.2007-0605.

    Article  PubMed  Google Scholar 

  36. Cools M, van Aerde K, Kersemaekers AM, Boter M, Drop SL, Wolffenbuttel KP et al. Morphological and immunohistochemical differences between gonadal maturation delay and early germ cell neoplasia in patients with undervirilization syndromes. J Clin Endocrinol Metab. 2005;90(9):5295–5303. doi:jc.2005–0139.

    Google Scholar 

  37. Cheng L, Sung MT, Cossu-Rocca P, Jones TD, MacLennan GT, De Jong J, et al. OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol. 2007;211(1):1–9. doi:10.1002/path.2105.

    Article  CAS  PubMed  Google Scholar 

  38. Onida GA, Bosincu L, Dessole S, Nicolae A, Preda O, Cossu-Rocca P et al. Sertoli cell tumor with benign peritoneal implants associated with gonadoblastoma. Int J Gynecol Pathol. 2010;29(5):423–426. doi:10.1097/PGP.0b013e3181dc7c2e. 00004347-201009000-00005 [pii].

  39. Jones TD, Ulbright TM, Eble JN, Baldridge LA, Cheng L. OCT4 staining in testicular tumors: a sensitive and specific marker for seminoma and embryonal carcinoma. Am J Surg Pathol. 2004;28(7):935–940. doi:00000478–-200407000-00014 [pii].

    Google Scholar 

  40. Jones TD, Ulbright TM, Eble JN, Cheng L. OCT4: a sensitive and specific biomarker for intratubular germ cell neoplasia of the testis. Clin Cancer Res. 2004;10(24):8544–8547. doi: 10.1158/1078-0432.CCR-04-0688. 10/24/8544 [pii].

  41. Cheng L. Establishing a germ cell origin for metastatic tumors using OCT4 immunohistochemistry. Cancer. 2004;101(9):2006–10. doi:10.1002/cncr.20566.

    Article  PubMed  Google Scholar 

  42. Richie JP. OCT4 staining in testicular tumors. A sensitive and specific marker for seminoma and embryonal carcinoma. J Urol. 2005;174(2):569–570. doi:S0022–5347(01)68313–7 [pii].

    Google Scholar 

  43. Teng LH, Lu DH, Xu QZ, Fu YJ, Yang H, He ZL. Expression and diagnostic significance of OCT4, CD117 and CD30 in germ cell tumors. Zhonghua Bing Li Xue Za Zhi. 2005;34(11):711–5.

    PubMed  Google Scholar 

  44. Lau SK, Chang KL. OCT4: a sensitive and specific immunohistochemical marker for metastatic germ cell tumors. Adv Anat Pathol. 2006;13(2):76–79. doi:10.1097/01.pap.0000213011.33232.72. 00125480-200603000-00002 [pii].

  45. Sung MT, Jones TD, Beck SD, Foster RS, Cheng L. OCT4 is superior to CD30 in the diagnosis of metastatic embryonal carcinomas after chemotherapy. Hum Pathol. 2006;37(6):662–667. doi:10.1016/j.humpath.2006.01.019.

  46. Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 2003;63(9):2244–50.

    CAS  PubMed  Google Scholar 

  47. Mosbech CH, Svingen T, Nielsen JE, Toft BG, Rechnitzer C, Petersen BL, et al. Expression pattern of clinically relevant markers in paediatric germ cell- and sex-cord stromal tumours is similar to adult testicular tumours. Virchows Arch. 2014;465(5):567–77. doi:10.1007/s00428-014-1635-1.

    Article  CAS  PubMed  Google Scholar 

  48. Abiko K, Mandai M, Hamanishi J, Matsumura N, Baba T, Horiuchi A, et al. Oct4 expression in immature teratoma of the ovary: relevance to histologic grade and degree of differentiation. Am J Surg Pathol. 2010;34(12):1842–8. doi:10.1097/PAS.0b013e3181fcd707.

    Article  PubMed  Google Scholar 

  49. Cheng L, Zhang S, Talerman A, Roth LM. Morphologic, immunohistochemical, and fluorescence in situ hybridization study of ovarian embryonal carcinoma with comparison to solid variant of yolk sac tumor and immature teratoma. Hum Pathol. 2010;41(5):716–23. doi:10.1016/j.humpath.2009.10.016.

    Article  CAS  PubMed  Google Scholar 

  50. Idrees MT, Williamson SR, Kieffer TW, Cheng L. The role of OCT4 immunohistochemistry in evaluation of retroperitoneal lymph node dissections: a pilot study. Mod Pathol. 2013;26(12):1613–9. doi:10.1038/modpathol.2013.110.

    Article  CAS  PubMed  Google Scholar 

  51. Hattab EM, Tu PH, Wilson JD, Cheng L. OCT4 immunohistochemistry is superior to placental alkaline phosphatase (PLAP) in the diagnosis of central nervous system germinoma. Am J Surg Pathol. 2005;29(3):368–371. doi:00000478–-200503000-00011 [pii].

    Google Scholar 

  52. Mueller T, Mueller LP, Holzhausen HJ, Witthuhn R, Albers P, Schmoll HJ. Histological evidence for the existence of germ cell tumor cells showing embryonal carcinoma morphology but lacking OCT4 expression and cisplatin sensitivity. Histochem Cell Biol. 2010;134(2):197–204. doi:10.1007/s00418-010-0710-1.

    Article  CAS  PubMed  Google Scholar 

  53. Nogales FF, Dulcey I, Preda O. Germ cell tumors of the ovary: an update. Arch Pathol Lab Med. 2014;138(3):351–62. doi:10.5858/arpa.2012-0547-RA.

    Article  PubMed  Google Scholar 

  54. Rao S, Zhen S, Roumiantsev S, McDonald LT, Yuan GC, Orkin SH. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol. 2010;30(22):5364–5380. doi: 10.1128/MCB.00419–10. MCB.00419–10 [pii].

  55. Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW et al. A protein interaction network for pluripotency of embryonic stem cells. Nature. 2006;444(7117):364–368. doi: 10.1038/nature05284. nature05284 [pii].

  56. Wu Q, Chen X, Zhang J, Loh YH, Low TY, Zhang W et al. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem. 2006;281(34):24090–24094. doi:10.1074/jbc.C600122200.

  57. Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8(10):1114–1123. doi: 10.1038/ncb1481.

  58. Yang J, Gao C, Chai L, Ma Y. A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS ONE. 2010;5(5):e10766. doi:10.1371/journal.pone.0010766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Elling U, Klasen C, Eisenberger T, Anlag K, Treier M. Murine inner cell mass-derived lineages depend on Sall4 function. Proc Natl Acad Sci U S A. 2006;103(44):16319–16324. doi: 10.1073/pnas.0607884103.

  60. Warren M, Wang W, Spiden S, Chen-Murchie D, Tannahill D, Steel KP, et al. A Sall4 mutant mouse model useful for studying the role of Sall4 in early embryonic development and organogenesis. Genesis. 2007;45(1):51–8. doi:10.1002/dvg.20264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cao D, Guo S, Allan RW, Molberg KH, Peng Y. SALL4 is a novel sensitive and specific marker of ovarian primitive germ cell tumors and is particularly useful in distinguishing yolk sac tumor from clear cell carcinoma. Am J Surg Pathol. 2009;33(6):894–904. doi:10.1097/PAS.0b013e318198177d.

    Article  PubMed  Google Scholar 

  62. Cao D, Li J, Guo CC, Allan RW, Humphrey PA. SALL4 is a novel diagnostic marker for testicular germ cell tumors. Am J Surg Pathol. 2009;33(7):1065–77. doi:10.1097/PAS.0b013e3181a13eef.

    Article  PubMed  Google Scholar 

  63. Wang F, Liu A, Peng Y, Rakheja D, Wei L, Xue D, et al. Diagnostic utility of SALL4 in extragonadal yolk sac tumors: an immunohistochemical study of 59 cases with comparison to placental-like alkaline phosphatase, alpha-fetoprotein, and glypican-3. Am J Surg Pathol. 2009;33(10):1529–39. doi:10.1097/PAS.0b013e3181ad25d5.

    Article  PubMed  Google Scholar 

  64. Cao D, Humphrey PA, Allan RW. SALL4 is a novel sensitive and specific marker for metastatic germ cell tumors, with particular utility in detection of metastatic yolk sac tumors. Cancer. 2009;115(12):2640–51. doi:10.1002/cncr.24308.

    Article  CAS  PubMed  Google Scholar 

  65. Liu A, Cheng L, Du J, Peng Y, Allan RW, Wei L, et al. Diagnostic utility of novel stem cell markers SALL4, OCT4, NANOG, SOX2, UTF1, and TCL1 in primary mediastinal germ cell tumors. Am J Surg Pathol. 2010;34(5):697–706. doi:10.1097/PAS.0b013e3181db84aa.

    PubMed  Google Scholar 

  66. Looijenga LH, Oosterhuis JW. Pathogenesis of testicular germ cell tumours. Rev Reprod. 1999;4(2):90–100.

    Article  CAS  PubMed  Google Scholar 

  67. Cui W, Kong NR, Ma Y, Amin HM, Lai R, Chai L. Differential expression of the novel oncogene, SALL4, in lymphoma, plasma cell myeloma, and acute lymphoblastic leukemia. Mod Pathol. 2006;19(12):1585–1592. doi: 10.1038/modpathol.3800694. 3800694 [pii].

  68. Miettinen M, Wang Z, McCue PA, Sarlomo-Rikala M, Rys J, Biernat W et al. SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am J Surg Pathol. 2014;38(3):410–420. doi:10.1097/PAS.0000000000000116. 00000478-201403000-00018 [pii].

  69. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–1242. doi: ng.465 [pii] 10.1038/ng.465.

    Google Scholar 

  70. Keramari M, Razavi J, Ingman KA, Patsch C, Edenhofer F, Ward CM, et al. Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS ONE. 2010;5(11):e13952. doi:10.1371/journal.pone.0013952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Adachi K, Suemori H, Yasuda SY, Nakatsuji N, Kawase E. Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells. 2010;15(5):455–470. doi:10.1111/j.1365-2443.2010.01400.x.

  72. Wood HB, Episkopou V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev. 1999;86(1–2):197–201. doi: S0925477399001161 [pii].

    Google Scholar 

  73. Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron. 2003;39(5):749–765. doi:S0896627303004975 [pii].

    Google Scholar 

  74. Laga AC, Lai CY, Zhan Q, Huang SJ, Velazquez EF, Yang Q et al. Expression of the embryonic stem cell transcription factor SOX2 in human skin: relevance to melanocyte and merkel cell biology. Am J Pathol. 2010;176(2):903–913. doi: 10.2353/ajpath.2010.090495. ajpath.2010.090495 [pii].

  75. Puligilla C, Dabdoub A, Brenowitz SD, Kelley MW. Sox2 induces neuronal formation in the developing mammalian cochlea. J Neurosci. 2010;30(2):714–722. doi: 10.1523/JNEUROSCI.3852-09.2010. 30/2/714 [pii].

  76. Phi JH, Kim JH, Eun KM, Wang KC, Park KH, Choi SA, et al. Upregulation of SOX2, NOTCH1, and ID1 in supratentorial primitive neuroectodermal tumors: a distinct differentiation pattern from that of medulloblastomas. J Neurosurg Pediatr. 2010;5(6):608–14. doi:10.3171/2010.2.PEDS1065.

    Article  PubMed  Google Scholar 

  77. Ji J, Zheng PS. Expression of Sox2 in human cervical carcinogenesis. Hum Pathol. 2010;41(10):1438–1447. doi: 10.1016/j.humpath.2009.11.021. S0046–8177(10)00113–9 [pii].

  78. Wang S, Chandler-Militello D, Lu G, Roy NS, Zielke A, Auvergne R et al. Prospective identification, isolation, and profiling of a telomerase-expressing subpopulation of human neural stem cells, using sox2 enhancer-directed fluorescence-activated cell sorting. J Neurosci. 2010;30(44):14635–14648. doi:30/44/14635 [pii]. 10.1523/JNEUROSCI.1729-10.2010.

  79. Ye F, Li Y, Hu Y, Zhou C, Chen H. Expression of Sox2 in human ovarian epithelial carcinoma. J Cancer Res Clin Oncol. 2011;137(1):131–7. doi:10.1007/s00432-010-0867-y.

  80. Maier S, Wilbertz T, Braun M, Scheble V, Reischl M, Mikut R, et al. SOX2 amplification is a common event in squamous cell carcinomas of different organ sites. Hum Pathol. 2011;42(8):1078–88. doi:10.1016/j.humpath.2010.11.010.

    Article  CAS  PubMed  Google Scholar 

  81. Hussenet T, du Manoir S. SOX2 in squamous cell carcinoma: Amplifying a pleiotropic oncogene along carcinogenesis. Cell Cycle. 2010;9(8). doi:11203 [pii].

    Google Scholar 

  82. Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, et al. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS ONE. 2010;5(6):e11022. doi:10.1371/journal.pone.0011022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Mutoh H, Sashikawa M, Sugano K. Sox2 expression is maintained while gastric phenotype is completely lost in Cdx2-induced intestinal metaplastic mucosa. Differentiation. 2010. doi:10.1016/j.diff.2010.10.002. S0301-4681(10)00294-X [pii].

  84. Sholl LM, Long KB, Hornick JL. Sox2 expression in pulmonary non-small cell and neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol. 2010;18(1):55–61. doi:10.1097/PAI.0b013e3181b16b88.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang X, Yu H, Yang Y, Zhu R, Bai J, Peng Z, et al. SOX2 in gastric carcinoma, but not Hath1, is related to patients’ clinicopathological features and prognosis. J Gastrointest Surg. 2010;14(8):1220–6. doi:10.1007/s11605-010-1246-3.

    Article  PubMed  Google Scholar 

  86. Sanada Y, Yoshida K, Ohara M, Oeda M, Konishi K, Tsutani Y. Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2: comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components. Pancreas. 2006;32(2):164–70. doi:10.1097/01.mpa.0000202947.80117.a0.

    Article  CAS  PubMed  Google Scholar 

  87. Stolnicu S, Goyenaga P, Hincu M, Marian C, Murillo R, Nogales FF. Embryonal (botryoides) rhabdomyosarcoma of the uterus harboring a primitive neuroectodermal tumor component. Int J Gynecol Pathol. 2012;31(4):387–9. doi:10.1097/PGP.0b013e31823ff3e6.

    Article  PubMed  Google Scholar 

  88. Huang YH, Luo MH, Ni YB, Tsang JY, Chan SK, Lui PC, et al. Increased SOX2 expression in less differentiated breast carcinomas and their lymph node metastases. Histopathology. 2014;64(4):494–503. doi:10.1111/his.12257.

    Article  PubMed  Google Scholar 

  89. Pham DL, Scheble V, Bareiss P, Fischer A, Beschorner C, Adam A, et al. SOX2 expression and prognostic significance in ovarian carcinoma. Int J Gynecol Pathol. 2013;32(4):358–67. doi:10.1097/PGP.0b013e31826a642b.

    Article  CAS  PubMed  Google Scholar 

  90. Perrett RM, Turnpenny L, Eckert JJ, O’Shea M, Sonne SB, Cameron IT et al. The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture. Biol Reprod. 2008;78(5):852–858. doi:biolreprod.107.066175 [pii] 10.1095/biolreprod.107.066175.

    Google Scholar 

  91. de Jong J, Stoop H, Gillis AJ, van Gurp RJ, van de Geijn GJ, Boer M, et al. Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. J Pathol. 2008;215(1):21–30. doi:10.1002/path.2332.

    Article  PubMed  CAS  Google Scholar 

  92. Sonne SB, Perrett RM, Nielsen JE, Baxter MA, Kristensen DM, Leffers H et al. Analysis of SOX2 expression in developing human testis and germ cell neoplasia. Int J Dev Biol. 2010;54(4):755–760. doi:082668ss [pii] 10.1387/ijdb.082668ss.

    Google Scholar 

  93. Archer TC, Jin J, Casey ES. Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis. Dev Biol. 2010. doi: 10.1016/j.ydbio.2010.12.013.

  94. Fong H, Hohenstein KA, Donovan PJ. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells. 2008;26(8):1931–1938. doi: 10.1634/stemcells.2007-1002. 2007-1002 [pii]

  95. Nonaka D. Differential expression of SOX2 and SOX17 in testicular germ cell tumors. Am J Clin Pathol. 2009;131(5):731–6. doi:10.1309/AJCP7MNCNBCRN8NO.

    Article  PubMed  Google Scholar 

  96. Moss EG, Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol. 2003;258(2):432–42.

    Article  CAS  PubMed  Google Scholar 

  97. Shyh-Chang N, Daley GQ. Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell. 2013;12(4):395–406. doi:10.1016/j.stem.2013.03.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Polesskaya A, Cuvellier S, Naguibneva I, Duquet A, Moss EG, Harel-Bellan A. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev. 2007;21(9):1125–38. doi:10.1101/gad.415007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science. 2008;320(5872):97–100. doi:10.1126/science.1154040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qiu C, Ma Y, Wang J, Peng S, Huang Y. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res. 2010;38(4):1240–8. doi:10.1093/nar/gkp1071.

    Article  CAS  PubMed  Google Scholar 

  101. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–1920. doi:10.1126/science.1151526.

  102. West JA, Viswanathan SR, Yabuuchi A, Cunniff K, Takeuchi A, Park IH et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature. 2009;460(7257):909–913. doi:10.1038/nature0821. nature08210 [pii].

  103. Childs AJ, Kinnell HL, He J, Anderson RA. LIN28 is selectively expressed by primordial and pre-meiotic germ cells in the human fetal ovary. Stem Cells Dev. 2012;21(13):2343–9. doi:10.1089/scd.2011.0730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xue D, Peng Y, Wang F, Allan RW, Cao D. RNA-binding protein LIN28 is a sensitive marker of ovarian primitive germ cell tumours. Histopathology. 2011;59(3):452–9. doi:10.1111/j.1365-2559.2011.03949.x.

    Article  PubMed  Google Scholar 

  105. Cao D, Liu A, Wang F, Allan RW, Mei K, Peng Y, et al. RNA-binding protein LIN28 is a marker for primary extragonadal germ cell tumors: an immunohistochemical study of 131 cases. Mod Pathol. 2011;24(2):288–96. doi:10.1038/modpathol.2010.195.

    Article  CAS  PubMed  Google Scholar 

  106. Cao D, Allan RW, Cheng L, Peng Y, Guo CC, Dahiya N, et al. RNA-binding protein LIN28 is a marker for testicular germ cell tumors. Hum Pathol. 2011;42(5):710–8. doi:10.1016/j.humpath.2010.09.007.

    Article  CAS  PubMed  Google Scholar 

  107. Xu C, Shen J, Xie S, Jiang Z, Huang L, Wang L. Positive expression of Lin28 is correlated with poor survival in gastric carcinoma. Med Oncol. 2013;30(1):382. doi:10.1007/s12032-012-0382-x.

    Article  PubMed  CAS  Google Scholar 

  108. King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 2011;71(12):4260–8. doi:10.1158/0008-5472.CAN-10-4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rodini CO, Suzuki DE, Saba-Silva N, Cappellano A, de Souza JE, Cavalheiro S, et al. Expression analysis of stem cell-related genes reveal OCT4 as a predictor of poor clinical outcome in medulloblastoma. J Neuro-Oncol. 2012;106(1):71–9. doi:10.1007/s11060-011-0647-9.

    Article  CAS  Google Scholar 

  110. Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, et al. Dissecting self-renewal in stem cells with RNA interference. Nature. 2006;442(7102):533–8. doi:10.1038/nature04915.

    Article  CAS  PubMed  Google Scholar 

  111. Wang Z, Oron E, Nelson B, Razis S, Ivanova N. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell. 2012;10(4):440–54. doi:10.1016/j.stem.2012.02.016.

    Article  CAS  PubMed  Google Scholar 

  112. Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S, et al. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells. 2005;23(8):1035–43. doi:10.1634/stemcells.2005-0080.

    Article  CAS  PubMed  Google Scholar 

  113. Hart AH, Hartley L, Parker K, Ibrahim M, Looijenga LH, Pauchnik M, et al. The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer. 2005;104(10):2092–8. doi:10.1002/cncr.21435.

    Article  CAS  PubMed  Google Scholar 

  114. Guo Y, Liu S, Wang P, Zhao S, Wang F, Bing L, et al. Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and Nanog in human gliomas. Histopathology. 2011;59(4):763–75. doi:10.1111/j.1365-2559.2011.03993.x.

    Article  PubMed  Google Scholar 

  115. Luo W, Li S, Peng B, Ye Y, Deng X, Yao K. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS ONE. 2013;8(2):e56324. doi:10.1371/journal.pone.0056324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. He QZ, Luo XZ, Wang K, Zhou Q, Ao H, Yang Y, et al. Isolation and characterization of cancer stem cells from high-grade serous ovarian carcinomas. Cell Physiol Biochem: Inter J Exper Cell Physiol Biochem Pharmacol. 2014;33(1):173–84. doi:10.1159/000356660.

    Article  CAS  Google Scholar 

  117. Schreiber L, Raanan C, Amsterdam A. CD24 and Nanog identify stem cells signature of ovarian epithelium and cysts that may develop to ovarian cancer. Acta Histochem. 2014;116(2):399–406. doi:10.1016/j.acthis.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  118. Auersperg N. The stem-cell profile of ovarian surface epithelium is reproduced in the oviductal fimbriae, with increased stem-cell marker density in distal parts of the fimbriae. Int J Gynecol Pathol. 2013;32(5):444–53. doi:10.1097/PGP.0b013e3182800ad5.

    Article  CAS  PubMed  Google Scholar 

  119. Nishimoto M, Fukushima A, Okuda A, Muramatsu M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol Cell Biol. 1999;19(8):5453–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fukushima A, Okuda A, Nishimoto M, Seki N, Hori TA, Muramatsu M. Characterization of functional domains of an embryonic stem cell coactivator UTF1 which are conserved and essential for potentiation of ATF-2 activity. J Biol Chem. 1998;273(40):25840–9.

    Article  CAS  PubMed  Google Scholar 

  121. Kooistra SM, Thummer RP, Eggen BJ. Characterization of human UTF1, a chromatin-associated protein with repressor activity expressed in pluripotent cells. Stem Cell Res. 2009;2(3):211–8. doi:10.1016/j.scr.2009.02.001.

    Article  CAS  PubMed  Google Scholar 

  122. Wang P, Li J, Allan RW, Guo CC, Peng Y, Cao D. Expression of UTF1 in primary and metastatic testicular germ cell tumors. Am J Clin Pathol. 2010;134(4):604–12. doi:10.1309/AJCPB44HBKINJNYU.

    Article  PubMed  Google Scholar 

  123. Mouallif M, Albert A, Zeddou M, Ennaji MM, Delvenne P, Guenin S. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia. Int J Exp Pathol. 2014;95(4):251–9. doi:10.1111/iep.12077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Laine J, Kunstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell. 2000;6(2):395–407.

    Article  CAS  PubMed  Google Scholar 

  125. Aggarwal M, Villuendas R, Gomez G, Rodriguez-Pinilla SM, Sanchez-Beato M, Alvarez D, et al. TCL1A expression delineates biological and clinical variability in B-cell lymphoma. Mod Pathol. 2009;22(2):206–15. doi:10.1038/modpathol.2008.148.

    Article  CAS  PubMed  Google Scholar 

  126. Trinh DT, Shibata K, Hirosawa T, Umezu T, Mizuno M, Kajiyama H, et al. Diagnostic utility of CD117, CD133, SALL4, OCT4, TCL1 and glypican-3 in malignant germ cell tumors of the ovary. J Obstet Gynaecol Res. 2012;38(5):841–8. doi:10.1111/j.1447-0756.2011.01798.x.

    Article  CAS  PubMed  Google Scholar 

  127. Lau SK, Weiss LM, Chu PG. TCL1 protein expression in testicular germ cell tumors. Am J Clin Pathol. 2010;133(5):762–6. doi:10.1309/AJCPIPU1MPTBM2FQ.

    Article  PubMed  Google Scholar 

  128. Matoba R, Niwa H, Masui S, Ohtsuka S, Carter MG, Sharov AA, et al. Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS ONE. 2006;1:e26. doi:10.1371/journal.pone.0000026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Cao D, Lane Z, Allan RW, Wang P, Guo CC, Peng Y, et al. TCL1 is a diagnostic marker for intratubular germ cell neoplasia and classic seminoma. Histopathology. 2010;57(1):152–7. doi:10.1111/j.1365-2559.2010.03583.x.

    Article  PubMed  Google Scholar 

  130. Zhang P, Andrianakos R, Yang Y, Liu C, Lu W. Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem. 2010;285(12):9180–9. doi:10.1074/jbc.M109.077958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  132. Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006;6(1):11–23. doi:10.1038/nrc1780.

    Article  CAS  PubMed  Google Scholar 

  133. Godmann M, Gashaw I, Katz JP, Nagy A, Kaestner KH, Behr R. Kruppel-like factor 4, a "pluripotency transcription factor" highly expressed in male postmeiotic germ cells, is dispensable for spermatogenesis in the mouse. Mech Dev. 2009;126(8–9):650–64. doi:10.1016/j.mod.2009.06.1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Godmann M, Gashaw I, Eildermann K, Schweyer S, Bergmann M, Skotheim RI, et al. The pluripotency transcription factor Kruppel-like factor 4 is strongly expressed in intratubular germ cell neoplasia unclassified and seminoma. Mol Hum Reprod. 2009;15(8):479–88. doi:10.1093/molehr/gap040.

    Article  CAS  PubMed  Google Scholar 

  135. Klco JM, Kulkarni S, Kreisel FH, Nguyen TD, Hassan A, Frater JL. Immunohistochemical analysis of monocytic leukemias: usefulness of CD14 and Kruppel-like factor 4, a novel monocyte marker. Am J Clin Pathol. 2011;135(5):720–30. doi:10.1309/AJCPZ46PMMAWJROT.

    Article  CAS  PubMed  Google Scholar 

  136. Liu Z, Yang H, Luo W, Jiang Q, Mai C, Chen Y, et al. Loss of cytoplasmic KLF4 expression is correlated with the progression and poor prognosis of nasopharyngeal carcinoma. Histopathology. 2013;63(3):362–70. doi:10.1111/his.12176.

    Article  PubMed  Google Scholar 

  137. Le Magnen C, Bubendorf L, Ruiz C, Zlobec I, Bachmann A, Heberer M, et al. Klf4 transcription factor is expressed in the cytoplasm of prostate cancer cells. Eur J Cancer. 2013;49(4):955–63. doi:10.1016/j.ejca.2012.09.023.

    Article  CAS  PubMed  Google Scholar 

  138. Gimelli S, Caridi G, Beri S, McCracken K, Bocciardi R, Zordan P, et al. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Hum Mutat. 2010;31(12):1352–9. doi:10.1002/humu.21378.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Katoh M. Molecular cloning and characterization of human SOX17. Int J Mol Med. 2002;9(2):153–7.

    CAS  PubMed  Google Scholar 

  140. Williamson JA, Bosher JM, Skinner A, Sheer D, Williams T, Hurst HC. Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics. 1996;35(1):262–4. doi:10.1006/geno.1996.0351.

    Article  CAS  PubMed  Google Scholar 

  141. Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M. Induction of mouse germ-cell fate by transcription factors in vitro. Nature. 2013;501(7466):222–6. doi:10.1038/nature12417.

    Article  CAS  PubMed  Google Scholar 

  142. Kuckenberg P, Buhl S, Woynecki T, van Furden B, Tolkunova E, Seiffe F, et al. The transcription factor TCFAP2C/AP-2gamma cooperates with CDX2 to maintain trophectoderm formation. Mol Cell Biol. 2010;30(13):3310–20. doi:10.1128/MCB.01215-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pauls K, Jager R, Weber S, Wardelmann E, Koch A, Buttner R, et al. Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. Int J Cancer. 2005;115(3):470–7. doi:10.1002/ijc.20913.

    Article  CAS  PubMed  Google Scholar 

  144. Woenckhaus C, Giebel J, Failing K, Fenic I, Dittberner T, Poetsch M. Expression of AP-2alpha, c-kit, and cleaved caspase-6 and -3 in naevi and malignant melanomas of the skin. A possible role for caspases in melanoma progression? J Pathol. 2003;201(2):278–87. doi:10.1002/path.1424.

    Article  CAS  PubMed  Google Scholar 

  145. Odegaard E, Staff AC, Kaern J, Florenes VA, Kopolovic J, Trope CG, et al. The AP-2gamma transcription factor is upregulated in advanced-stage ovarian carcinoma. Gynecol Oncol. 2006;100(3):462–8. doi:10.1016/j.ygyno.2005.09.022.

    Article  CAS  PubMed  Google Scholar 

  146. Monk D, Bentley L, Beechey C, Hitchins M, Peters J, Preece MA, et al. Characterisation of the growth regulating gene IMP3, a candidate for Silver-Russell syndrome. J Med Genet. 2002;39(8):575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Poole RL, Leith DJ, Docherty LE, Shmela ME, Gicquel C, Splitt M, et al. Beckwith-Wiedemann syndrome caused by maternally inherited mutation of an OCT-binding motif in the IGF2/H19-imprinting control region, ICR1. Eur J Human Genet: EJHG. 2012;20(2):240–3. doi:10.1038/ejhg.2011.166.

    Article  CAS  PubMed  Google Scholar 

  148. Kobel M, Xu H, Bourne PA, Spaulding BO, Shih Ie M, Mao TL, et al. IGF2BP3 (IMP3) expression is a marker of unfavorable prognosis in ovarian carcinoma of clear cell subtype. Mod Pathol. 2009;22(3):469–75. doi:10.1038/modpathol.2008.206.

    Article  PubMed  CAS  Google Scholar 

  149. Hammer NA, Hansen T, Byskov AG, Rajpert-De Meyts E, Grondahl ML, Bredkjaer HE, et al. Expression of IGF-II mRNA-binding proteins (IMPs) in gonads and testicular cancer. Reproduction. 2005;130(2):203–12. doi:10.1530/rep.1.00664.

    Article  CAS  PubMed  Google Scholar 

  150. Shi M, Fraire AE, Chu P, Cornejo K, Woda BA, Dresser K, et al. Oncofetal protein IMP3, a new diagnostic biomarker to distinguish malignant mesothelioma from reactive mesothelial proliferation. Am J Surg Pathol. 2011;35(6):878–82. doi:10.1097/PAS.0b013e318218985b.

    Article  PubMed  Google Scholar 

  151. Goodman S, Zhang L, Cheng L, Jiang Z. Differential expression of IMP3 between male and female mature teratomas--immunohistochemical evidence of malignant nature. Histopathology. 2014;65(4):483–9. doi:10.1111/his.12409.

    Article  PubMed  Google Scholar 

  152. DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991;64(4):849–59.

    Article  CAS  PubMed  Google Scholar 

  153. Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol. 2010;222(1):42–9. doi:10.1002/jcp.21943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet. 1995;11(1):40–4. doi:10.1038/ng0995-40.

    Article  CAS  PubMed  Google Scholar 

  155. Joulin V, Bories D, Eleouet JF, Labastie MC, Chretien S, Mattei MG, et al. A T-cell specific TCR delta DNA binding protein is a member of the human GATA family. EMBO J. 1991;10(7):1809–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Luo XJ, Deng M, Xie X, Huang L, Wang H, Jiang L et al. GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Hum Mol Genet. 2013;22(18):3609–3623. doi:10.1093/hmg/ddt212/ddt212. [pii].

  157. Ordonez NG. Value of GATA3 immunostaining in tumor diagnosis: a review. Adv Anat Pathol. 2013;20(5):352–360. doi:10.1097/PAP.0b013e3182a28a68. 00125480-201309000-00006 [pii].

  158. Ranganath S, Murphy KM. Structure and specificity of GATA proteins in Th2 development. Mol Cell Biol. 2001;21(8):2716–25. doi:10.1128/MCB.21.8.2716-2725.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Miettinen M, McCue PA, Sarlomo-Rikala M, Rys J, Czapiewski P, Wazny K, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38(1):13–22. doi:10.1097/PAS.0b013e3182a0218f.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Schuldt M, Rubio A, Preda O, Nogales FF. GATA3 expression is present in primitive patterns of Yolk Sac Tumors but is not expressed by differentiated variants. Histopathology. 2015;68(4):613–5. doi:10.1111/his.12776.

    Article  PubMed  Google Scholar 

  161. Wendroth SM, Mentrikoski MJ, Wick MR. GATA3 expression in morphologic subtypes of breast carcinoma: a comparison with gross cystic disease fluid protein 15 and mammaglobin. Ann Diagn Pathol. 2015;19(1):6–9. doi:10.1016/j.anndiagpath.2014.12.001.

    Article  PubMed  Google Scholar 

  162. Ordonez NG. Value of GATA3 immunostaining in the diagnosis of parathyroid tumors. Appl Immunohistochem Mol Morphol. 2014;22(10):756–61. doi:10.1097/PAI.0000000000000007.

    Article  CAS  PubMed  Google Scholar 

  163. Schwartz LE, Begum S, Westra WH, Bishop JA. GATA3 immunohistochemical expression in salivary gland neoplasms. Head Neck Pathol. 2013;7(4):311–5. doi:10.1007/s12105-013-0442-3.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Howitt BE, Emori MM, Drapkin R, Gaspar C, Barletta JA, Nucci MR, et al. GATA3 is a sensitive and specific marker of benign and malignant mesonephric lesions in the lower female genital tract. Am J Surg Pathol. 2015;39(10):1411–9. doi:10.1097/PAS.0000000000000471.

    Article  PubMed  Google Scholar 

  165. Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P et al. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development. 2010;137(3):395–403. doi:10.1242/dev.038828. 137/3/395 [pii].

  166. Seargeant LE, Stinson RA. Evidence that three structural genes code for human alkaline phosphatases. Nature. 1979;281(5727):152–4.

    Article  CAS  PubMed  Google Scholar 

  167. McKenna MJ, Hamilton TA, Sussman HH. Comparison of human alkaline phosphatase isoenzymes. Structural evidence for three protein classes. Biochem J. 1979;181(1):67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Henthorn PS, Raducha M, Kadesch T, Weiss MJ, Harris H. Sequence and characterization of the human intestinal alkaline phosphatase gene. J Biol Chem. 1988;263(24):12011–9.

    CAS  PubMed  Google Scholar 

  169. Javadpour N. The role of biologic tumor markers in testicular cancer. Cancer. 1980;45(7 Suppl):1755–61.

    CAS  PubMed  Google Scholar 

  170. Nielsen OS, Munro AJ, Duncan W, Sturgeon J, Gospodarowicz MK, Jewett MA, et al. Is placental alkaline phosphatase (PLAP) a useful marker for seminoma? Eur J Cancer. 1990;26(10):1049–54.

    Article  CAS  PubMed  Google Scholar 

  171. Fishman WH. Clinical and biological significance of an isozyme tumor marker--PLAP. Clin Biochem. 1987;20(6):387–392. doi:0009–9120(87)90003–8 [pii].

    Google Scholar 

  172. De Broe M, Pollet D. Multicenter evaluation of human placental alkaline phosphatase as a possible tumor-associated antigen in serum. Clin Chem. 1988;34(10):1995–9.

    CAS  PubMed  Google Scholar 

  173. Muensch HA, Maslow WC, Azama F, Bertrand M, Dewhurst P, Hartman B. Placental-like alkaline phosphatase. Re-evaluation of the tumor marker with exclusion of smokers. Cancer. 1986;58(8):1689–94.

    Article  CAS  PubMed  Google Scholar 

  174. Kommoss F, Oliva E, Bittinger F, Kirkpatrick CJ, Amin MB, Bhan AK, et al. Inhibin-alpha CD99, HEA125, PLAP, and chromogranin immunoreactivity in testicular neoplasms and the androgen insensitivity syndrome. Hum Pathol. 2000;31(9):1055–61. doi:10.1053/hupa.2000.16237.

    Article  CAS  PubMed  Google Scholar 

  175. Epenetos AA, Munro AJ, Tucker DF, Gregory W, Duncan W, MacDougall RH, et al. Monoclonal antibody assay of serum placental alkaline phosphatase in the monitoring of testicular tumours. Br J Cancer. 1985;51(5):641–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Koshida K, Uchibayashi T, Yamamoto H, Hirano K. Significance of placental alkaline phosphatase (PLAP) in the monitoring of patients with seminoma. Br J Urol. 1996;77(1):138–42.

    Article  CAS  PubMed  Google Scholar 

  177. Wick MR, Swanson PE, Manivel JC. Placental-like alkaline phosphatase reactivity in human tumors: an immunohistochemical study of 520 cases. Hum Pathol. 1987;18(9):946–54.

    Article  CAS  PubMed  Google Scholar 

  178. Durak H, Comunoglu NU, Comunoglu C, Guven A, Cam M, Dervisoglu S, et al. Specificity and sensitivity of differentiation antigens in superficial soft tissue tumors: comparison of SMA, calponin, H-caldesmon, C-kit. PLAP HPL Bratisl Lek Listy. 2010;111(8):432–8.

    PubMed  Google Scholar 

  179. Hustin J, Collette J, Franchimont P. Immunohistochemical demonstration of placental alkaline phosphatase in various states of testicular development and in germ cell tumours. Int J Androl. 1987;10(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  180. Koshida K, Wahren B. Placental-like alkaline phosphatase in seminoma. Urol Res. 1990;18(2):87–92.

    Article  CAS  PubMed  Google Scholar 

  181. Manivel JC, Jessurun J, Wick MR, Dehner LP. Placental alkaline phosphatase immunoreactivity in testicular germ-cell neoplasms. Am J Surg Pathol. 1987;11(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  182. Uchida T, Shimoda T, Miyata H, Shikata T, Iino S, Suzuki H, et al. Immunoperoxidase study of alkaline phosphatase in testicular tumor. Cancer. 1981;48(6):1455–62.

    Article  CAS  PubMed  Google Scholar 

  183. Yoshida M, Koshiyama M, Konishi M, Fujii H, Nanno H, Hayashi M et al. Ovarian dysgerminoma showing high serum levels and positive immunostaining of placental alkaline phosphatase and neuron-specific enolase associated with elevation of serum prolactin level. Eur J Obstet Gynecol Reprod Biol. 1998;81(1):123–128. doi:S0301211598001626 [pii].

    Google Scholar 

  184. Schar BK, Otto VI, Hanseler E. Simultaneous detection of all four alkaline phosphatase isoenzymes in human germ cell tumors using reverse transcription-PCR. Cancer Res. 1997;57(17):3841–6.

    CAS  PubMed  Google Scholar 

  185. Tamiolakis D, Papadopoulos N, Lambropoulou M, Venizelos J, Verettas D, Tsikouras P, et al. Ber-H2 (CD30) immunohistochemical staining of human fetal tissues. Int J Biol Sci. 2005;1(4):135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Latza U, Foss HD, Durkop H, Eitelbach F, Dieckmann KP, Loy V, et al. CD30 antigen in embryonal carcinoma and embryogenesis and release of the soluble molecule. Am J Pathol. 1995;146(2):463–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Pera MF, Bennett W, Cerretti DP. Expression of CD30 and CD30 ligand in cultured cell lines from human germ-cell tumors. Lab Investig. 1997;76(4):497–504.

    CAS  PubMed  Google Scholar 

  188. Croager EJ, Gout AM, Abraham LJ. Involvement of Sp1 and microsatellite repressor sequences in the transcriptional control of the human CD30 gene. Am J Pathol. 2000;156(5):1723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Herszfeld D, Wolvetang E, Langton-Bunker E, Chung TL, Filipczyk AA, Houssami S et al. CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol. 2006;24(3):351–357. doi:10.1038/nbt1197.

  190. Stein H, Gerdes J, Schwab U, Lemke H, Mason DY, Ziegler A, et al. Identification of Hodgkin and Sternberg-reed cells as a unique cell type derived from a newly-detected small-cell population. Int J Cancer. 1982;30(4):445–59.

    Article  CAS  PubMed  Google Scholar 

  191. Stein H, Mason DY, Gerdes J, O’Connor N, Wainscoat J, Pallesen G, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66(4):848–58.

    CAS  PubMed  Google Scholar 

  192. Oflazoglu E, Grewal IS, Gerber H. Targeting CD30/CD30L in oncology and autoimmune and inflammatory diseases. Adv Exp Med Biol. 2009;647:174–85. doi:10.1007/978-0-387-89520-8_12.

    Article  CAS  PubMed  Google Scholar 

  193. Pallesen G, Hamilton-Dutoit SJ. Ki-1 (CD30) antigen is regularly expressed by tumor cells of embryonal carcinoma. Am J Pathol. 1988;133(3):446–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Cossu-Rocca P, Jones TD, Roth LM, Eble JN, Zheng W, Karim FW et al. Cytokeratin and CD30 expression in dysgerminoma. Hum Pathol. 2006;37(8):1015–1021. doi:10.1016/j.humpath.2006.02.018.

  195. Berney DM, Shamash J, Pieroni K, Oliver RT. Loss of CD30 expression in metastatic embryonal carcinoma: the effects of chemotherapy? Histopathology. 2001;39(4):382–385. doi:1226 [pii].

    Google Scholar 

  196. Hittmair A, Rogatsch H, Hobisch A, Mikuz G, Feichtinger H. CD30 expression in seminoma. Hum Pathol. 1996;27(11):1166–71.

    Article  CAS  PubMed  Google Scholar 

  197. Ferreiro JA. Ber-H2 expression in testicular germ cell tumors. Hum Pathol. 1994;25:522–4.

    Article  CAS  PubMed  Google Scholar 

  198. Yang F, Luna VJ, Mcanelly RD, Naberhaus KH, Cupples RL, Bowman BH. Evolutionary and Structural Relationships among the Group-Specific Component. Albumin Alpha-Fetoprotein Nucleic Acids Res. 1985;13(22):8007–17.

    Article  CAS  PubMed  Google Scholar 

  199. Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Maywood). 2001;226(5):377–408.

    CAS  Google Scholar 

  200. Nogales FF, Dulcey I. The secondary human yolk sac has an immunophenotype indicative of both hepatic and intestinal differentiation. Int J Dev Biol. 2012;56(9):755–60. doi:10.1387/ijdb.120080fn.

    Article  PubMed  Google Scholar 

  201. El-Bahrawy M. Alpha-fetoprotein-producing non-germ cell tumours of the female genital tract. Eur J Cancer. 2010;46(8):1317–1322. doi: 10.1016/j.ejca.2010.01.028.

  202. Kishimoto T, Yano T, Hiroshima K, Inayama Y, Kawachi K, Nakatani Y. A case of *-fetoprotein-producing pulmonary carcinoma with restricted expression of hepatocyte nuclear factor-4* in hepatoid foci: a case report with studies of previous cases. Hum Pathol. 2008;39(7):1115–1120. doi: 10.1016/j.humpath.2007.12.013.

  203. Tsuchida Y, Kaneko M, Fukui M, Sakaguchi H, Ishiguro T. Three different types of alpha-fetoprotein in the diagnosis of malignant solid tumors: use of a sensitive lectin-affinity immunoelectrophoresis. J Pediatr Surg. 1989;24(4):350–355. doi:S0022346889001740.

    Google Scholar 

  204. Kinoshita Y, Tajiri T, Souzaki R, Tatsuta K, Higashi M, Izaki T et al. Diagnostic value of lectin reactive alpha-fetoprotein for neoinfantile hepatic tumors and malignant germ cell tumors: preliminary study. J Pediatr Hematol Oncol. 2008;30(6):447–450. doi:10.1097/MPH.0b013e31816916ad. 00043426-200806000-00006 [pii].

  205. Nogales F, Fernandez PL, Alvaro T. Alfa-fetoprotein-positive globules in involuting human yolk sac. Hum Pathol. 1988;19(8):995.

    Article  CAS  PubMed  Google Scholar 

  206. Nogales FF, Quinonez E, Lopez-Marin L, Dulcey I, Preda O. A diagnostic immunohistochemical panel for yolk sac (primitive endodermal) tumours based on an immunohistochemical comparison with the human yolk sac. Histopathology. 2014;65(1):51–9. doi:10.1111/his.12373.

    Article  PubMed  Google Scholar 

  207. Jacobsen GK, Jacobsen M. Alpha-fetoprotein (AFP) and human chorionic gonadotropin (HCG) in testicular germ cell tumours. A prospective immunohistochemical study. Acta Pathol Microbiol Immunol Scand A. 1983;91(3):165–76.

    CAS  PubMed  Google Scholar 

  208. Nose K, Saito H, Kuroki T. Isolation of a gene sequence induced later by tumor-promoting 12-O-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells. Cell Growth Diff: Mol Biol J Am Ass Cancer Res. 1990;1(11):511–8.

    CAS  Google Scholar 

  209. Ordonez NG. Podoplanin: a novel diagnostic immunohistochemical marker. Adv Anat Pathol. 2006;13(2):83–88. doi:10.1097/01.pap.0000213007.48479.94. 00125480-200603000-00004 [pii].

  210. Breiteneder-Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol. 1997;151(4):1141–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Wetterwald A, Hoffstetter W, Cecchini MG, Lanske B, Wagner C, Fleisch H et al. Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone. 1996;18(2):125–132. doi:8756328295004572 [pii].

    Google Scholar 

  212. Al-Rawi MAA, Mansel RE, Jiang WG. Molecular and cellular mechanisms of lymphangiogenesis. Eur J Surg Oncol. 2005;31(2):117–21. doi:10.1016/j.ejso.2004.08.015.

    Article  CAS  PubMed  Google Scholar 

  213. Ramirez MI, Millien G, Hinds A, Cao Y, Seldin DC, Williams MC. T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol. 2003;256(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  214. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22(14):3546–56. doi:10.1093/emboj/cdg342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Evangelou E, Kyzas PA, Trikalinos TA. Comparison of the diagnostic accuracy of lymphatic endothelium markers: bayesian approach. Mod Pathol. 2005;18(11):1490–1497. doi: 10.1038/modpathol.3800457.

  216. Kahn HJ, Marks A. A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Investig. 2002;82(9):1255–7.

    Article  PubMed  Google Scholar 

  217. Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG et al. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol. 2003;162(6):1951–1960. doi: 10.1016/S0002-9440(10)64328-3.

  218. Dumoff KL, Chu C, Xu X, Pasha T, Zhang PJ, Acs G. Low D2-40 immunoreactivity correlates with lymphatic invasion and nodal metastasis in early-stage squamous cell carcinoma of the uterine cervix. Mod Pathol. 2005;18(1):97–104. doi: 10.1038/modpathol.3800269.

  219. Schmid K, Birner P, Gravenhorst V, End A, Geleff S. Prognostic value of lymphatic and blood vessel invasion in neuroendocrine tumors of the lung. Am J Surg Pathol. 2005;29(3):324–328. doi:00000478–200503000-00005 [pii].

    Google Scholar 

  220. Sinzelle E, Duong Van Huyen JP, Breiteneder-Geleff S, Braunberger E, Deloche A, Kerjaschki D, et al. Intrapericardial lymphangioma with podoplanin immunohistochemical characterization of lymphatic endothelial cells. Histopathology. 2000;37(1):93–94. doi:his955–8 [pii].

    Google Scholar 

  221. Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 2005;166(3):913–21. doi:10.1016/S0002-9440(10)62311-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kahn HJ, Bailey D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s sarcoma and a subset of angiosarcomas. Mod Pathol. 2002;15(4):434–40. doi:10.1038/modpathol.3880543.

    Article  PubMed  Google Scholar 

  223. Roy S, Chu A, Trojanowski JQ, Zhang PJ. D2-40, a novel monoclonal antibody against the M2A antigen as a marker to distinguish hemangioblastomas from renal cell carcinomas. Acta Neuropathol. 2005;109(5):497–502. doi:10.1007/s00401-005-0999-3.

    Article  CAS  PubMed  Google Scholar 

  224. Chu AY, Litzky LA, Pasha TL, Acs G, Zhang PJ. Utility of D2-40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol. 2005;18(1):105–110. doi:10.1038/modpathol. 3800259 [pii].

  225. Ordonez NG. The diagnostic utility of immunohistochemistry in distinguishing between epithelioid mesotheliomas and squamous carcinomas of the lung: a comparative study. Mod Pathol. 2006;19(3):417–428. doi: 10.1038/modpathol.3800544.

  226. Padgett DM, Cathro HP, Wick MR, Mills SE. Podoplanin is a better immunohistochemical marker for sarcomatoid mesothelioma than calretinin. Am J Surg Pathol. 2008;32(1):123–127. doi:10.1097/PAS.0b013e31814faacf. 00000478-200801000-00017 [pii].

  227. Biermann K, Klingmuller D, Koch A, Pietsch T, Schorle H, Buttner R et al. Diagnostic value of markers M2A, OCT3/4, AP-2gamma, PLAP and c-KIT in the detection of extragonadal seminomas. Histopathology. 2006;49(3):290–297. doi: 10.1111/j.1365-2559.2006.02496.x.

  228. Bailey D, Marks A, Stratis M, Baumal R. Immunohistochemical staining of germ cell tumors and intratubular malignant germ cells of the testis using antibody to placental alkaline phosphatase and a monoclonal anti-seminoma antibody. Mod Pathol. 1991;4(2):167–71.

    CAS  PubMed  Google Scholar 

  229. Iczkowski KA, Butler SL, Shanks JH, Hossain D, Schall A, Meiers I et al. Trials of new germ cell immunohistochemical stains in 93 extragonadal and metastatic germ cell tumors. Hum Pathol. 2008;39(2):275–281. doi: 10.1016/j.humpath.2007.07.002.

  230. Idrees M, Saxena R, Cheng L, Ulbright TM, Badve S. Podoplanin, a novel marker for seminoma: a comparison study evaluating immunohistochemical expression of podoplanin and OCT3/4. Ann Diagn Pathol. 2010;14(5):331–336. doi: 10.1016/j.anndiagpath.2010.05.008.

  231. Yu H, Pinkus GS, Hornick JL. Diffuse membranous immunoreactivity for podoplanin (D2-40) distinguishes primary and metastatic seminomas from other germ cell tumors and metastatic neoplasms. Am J Clin Pathol. 2007;128(5):767–775. doi: 10.1309/4GMREAULY257R3AY. 0618U45P37311296 [pii].

  232. Marks A, Sutherland DR, Bailey D, Iglesias J, Law J, Lei M, et al. Characterization and distribution of an oncofetal antigen (M2A antigen) expressed on testicular germ cell tumours. Br J Cancer. 1999;80(3–4):569–78. doi:10.1038/sj.bjc.6690393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. De Cat B, David G. Developmental roles of the glypicans. Semin Cell Dev Biol. 2001;12(2):117–125. doi:10.1006/scdb.2000.0240. S1084-9521(00)90240-4 [pii].

  234. De Cat B, Muyldermans SY, Coomans C, Degeest G, Vanderschueren B, Creemers J, et al. Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol. 2003;163(3):625–35. doi:10.1083/jcb.200302152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Maeda D, Ota S, Takazawa Y, Aburatani H, Nakagawa S, Yano T et al. Glypican-3 expression in clear cell adenocarcinoma of the ovary. Mod Pathol. 2009;22(6):824–832. doi: 10.1038/modpathol.2009.40.

  236. Gonzalez AD, Kaya M, Shi W, Song H, Testa JR, Penn LZ, et al. OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line-specific manner. J Cell Biol. 1998;141(6):1407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Søren Nielsen RR. NordiQC Glypican3 Assessment Run 42 2014. NordiQC, http://www.nordiqc.org/Run-42-B18-H6/Assessment/Run42_GLP3.pdf. 2014.

  238. Preda O, Nicolae A, Aneiros-Fernandez J, Borda A, Nogales FF. Glypican 3 is a sensitive, but not a specific, marker for the diagnosis of yolk sac tumours. Histopathology. 2011;58(2):312–4. doi:10.1111/j.1365-2559.2010.03735.x.

    Article  PubMed  Google Scholar 

  239. Khan S, Blackburn M, Mao DL, Huber R, Schlessinger D, Fant M. Glypican-3 (GPC3) expression in human placenta: localization to the differentiated syncytiotrophoblast. Histol Histopathol. 2001;16(1):71–8.

    CAS  PubMed  Google Scholar 

  240. Esheba GE, Pate LL, Longacre TA. Oncofetal protein glypican-3 distinguishes yolk sac tumor from clear cell carcinoma of the ovary. Am J Surg Pathol. 2008;32(4):600–7. doi:10.1097/PAS.0b013e31815a565a.

    Article  PubMed  Google Scholar 

  241. Zynger DL, Dimov ND, Luan C, Teh BT, Yang XJ. Glypican 3: a novel marker in testicular germ cell tumors. Am J Surg Pathol. 2006;30(12):1570–1575. doi:10.1097/01.pas.0000213322.89670.48. 00000478-200612000-00010 [pii].

  242. Zynger DL, Everton MJ, Dimov ND, Chou PM, Yang XJ. Expression of glypican 3 in ovarian and extragonadal germ cell tumors. Am J Clin Pathol. 2008;130(2):224–230. doi: 10.1309/8DN7DQRDFB4QNH3N.

  243. Murthy SS, Shen T, De Rienzo A, Lee WC, Ferriola PC, Jhanwar SC, et al. Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma. Oncogene. 2000;19(3):410–6. doi:10.1038/sj.onc.1203322.

    Article  CAS  PubMed  Google Scholar 

  244. Lin H, Huber R, Schlessinger D, Morin PJ. Frequent silencing of the GPC3 gene in ovarian cancer cell lines. Cancer Res. 1999;59(4):807–10.

    CAS  PubMed  Google Scholar 

  245. Xiang YY, Ladeda V, Filmus J. Glypican-3 expression is silenced in human breast cancer. Oncogene. 2001;20(50):7408–12. doi:10.1038/sj.onc.1204925.

    Article  CAS  PubMed  Google Scholar 

  246. Saikali Z, Sinnett D. Expression of glypican 3 (GPC3) in embryonal tumors. Int J Cancer. 2000;89(5):418–422. doi:10.1002/1097-0215(20000920)89:5<418::AID-IJC4>3.0.CO;2-I. [pii].

  247. Lage H, Dietel M, Froschle G, Reymann A. Expression of the novel mitoxantrone resistance associated gene MXR7 in colorectal malignancies. Int J Clin Pharmacol Ther. 1998;36(1):58–60.

    CAS  PubMed  Google Scholar 

  248. Hsu HC, Cheng W, Lai PL. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res. 1997;57(22):5179–84.

    CAS  PubMed  Google Scholar 

  249. Zhu ZW, Friess H, Wang L, Abou-Shady M, Zimmermann A, Lander AD, et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut. 2001;48(4):558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Baumhoer D, Tornillo L, Stadlmann S, Roncalli M, Diamantis EK, Terracciano LM. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am J Clin Pathol. 2008;129(6):899–906. doi:10.1309/HCQWPWD50XHD2DW6.

    Article  PubMed  Google Scholar 

  251. Matsuyama TA, Kushima M, Yamochi-Onizuka T, Ota H. Placental yolk sac tumor with divergent endodermal differentiation. Int J Gynecol Pathol. 2004;23(4):398–402. doi:00004347-200410000-00014 [pii].

    Google Scholar 

  252. Drut R, Mortera M, Drut RM. Yolk sac tumor of the placenta in Wiedemann-Beckwith syndrome. Pediatr Dev Pathol. 1998;1(6):534–537. doi:PD-97-32 [pii].

    Google Scholar 

  253. Vandeputte M, Sobis H, Billiau A, Van de Maele B, Leyten R. In utero tumor induction by murine sarcoma virus (Moloney) in the rat. I Biological characteristics. Int J Cancer. 1973;11(3):536–42.

    Article  CAS  PubMed  Google Scholar 

  254. Sobis H, Vandeputte M. In utero tumor induction by murine sarcoma virus (Moloney) in the rat. II. Histological and ultrastructural characteristics. Int J Cancer. 1973;11(3):543–54.

    Article  CAS  PubMed  Google Scholar 

  255. Ou-Yang RJ, Hui P, Yang XJ, Zynger DL. Expression of glypican 3 in placental site trophoblastic tumor. Diagn Pathol. 2010;5:64. doi: 10.1186/1746-1596-5-64. 1746-1596-5-64 [pii].

  256. Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology. 2003;125(1):89–97. doi:S0016508503006899 [pii].

    Google Scholar 

  257. Yamauchi N, Watanabe A, Hishinuma M, Ohashi K, Midorikawa Y, Morishita Y et al. The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma. Mod Pathol. 2005;18(12):1591–1598. doi: 10.1038/modpathol.3800436.

  258. Liu H, Li P, Zhai Y, Qu CF, Zhang LJ, Tan YF, et al. Diagnostic value of glypican-3 in serum and liver for primary hepatocellular carcinoma. World J Gastroenterol. 2010;16(35):4410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Nakatsura T, Kageshita T, Ito S, Wakamatsu K, Monji M, Ikuta Y et al. Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res. 2004;10(19):6612–6621. doi: 10.1158/1078-0432.CCR-04-0348. 10/19/6612 [pii].

  260. Umezu T, Shibata K, Kajiyama H, Yamamoto E, Nawa A, Kikkawa F. Glypican-3 expression predicts poor clinical outcome of patients with early-stage clear cell carcinoma of the ovary. J Clin Pathol. 2010;63(11):962–966. doi: 10.1136/jcp.2010.080234.

  261. Aviel-Ronen S, Lau SK, Pintilie M, Lau D, Liu N, Tsao MS et al. Glypican-3 is overexpressed in lung squamous cell carcinoma, but not in adenocarcinoma. Mod Pathol. 2008;21(7):817–825. doi: 10.1038/modpathol.2008.37.

  262. Ushiku T, Uozaki H, Shinozaki A, Ota S, Matsuzaka K, Nomura S et al. Glypican 3-expressing gastric carcinoma: distinct subgroup unifying hepatoid, clear-cell, and alpha-fetoprotein-producing gastric carcinomas. Cancer Sci. 2009;100(4):626–632. doi: 10.1111/j.1349-7006.2009.01108.x.

  263. Ota S, Hishinuma M, Yamauchi N, Goto A, Morikawa T, Fujimura T, et al. Oncofetal protein glypican-3 in testicular germ-cell tumor. Virchows Arch. 2006;449(3):308–14. doi:10.1007/s00428-006-0238-x.

    Article  CAS  PubMed  Google Scholar 

  264. Zynger DL, McCallum JC, Luan C, Chou PM, Yang XJ. Glypican 3 has a higher sensitivity than alpha-fetoprotein for testicular and ovarian yolk sac tumour: immunohistochemical investigation with analysis of histological growth patterns. Histopathology. 2010;56(6):750–757. doi: 10.1111/j.1365-2559.2010.03553.x.

  265. Cahoreau C, Klett D, Combarnous Y. Structure-function relationships of glycoprotein hormones and their subunits’ ancestors. Front Endocrinol. 2015;6:26. doi:10.3389/fendo.2015.00026.

    Article  Google Scholar 

  266. Talmadge K, Boorstein WR, Fiddes JC. The human genome contains seven genes for the beta-subunit of chorionic gonadotropin but only one gene for the beta-subunit of luteinizing hormone. DNA. 1983;2(4):281–9.

    Article  CAS  PubMed  Google Scholar 

  267. Cole LA. Biological functions of hCG and hCG-related molecules. Reprod biol Endocrinol: RBE. 2010;8:102. doi:10.1186/1477-7827-8-102.

    Article  CAS  Google Scholar 

  268. Lempiainen A, Sankila A, Hotakainen K, Haglund C, Blomqvist C, Stenman UH. Expression of human chorionic gonadotropin in testicular germ cell tumors. Urol Oncol. 2014;32(5):727–34. doi:10.1016/j.urolonc.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  269. Hes O, Pivovarcikova K, Stehlik J, Martinek P, Vanecek T, Bauleth K, et al. Choriogonadotropin positive seminoma-a clinicopathological and molecular genetic study of 15 cases. Ann Diagn Pathol. 2014;18(2):89–94. doi:10.1016/j.anndiagpath.2013.12.004.

    Article  PubMed  Google Scholar 

  270. Shih IM. Trophogram, an immunohistochemistry-based algorithmic approach, in the differential diagnosis of trophoblastic tumors and tumorlike lesions. Ann Diagn Pathol. 2007;11(3):228–34. doi:10.1016/j.anndiagpath.2007.04.001.

    Article  PubMed  Google Scholar 

  271. Losch A, Kainz C. Immunohistochemistry in the diagnosis of the gestational trophoblastic disease. Acta Obstet Gynecol Scand. 1996;75(8):753–6.

    Article  CAS  PubMed  Google Scholar 

  272. Stenman UH, Alfthan H, Hotakainen K. Human chorionic gonadotropin in cancer. Clin Biochem. 2004;37(7):549–61. doi:10.1016/j.clinbiochem.2004.05.008.

    Article  CAS  PubMed  Google Scholar 

  273. Lawless ME, Jour G, Hoch BL, Rendi MH. Beta-human chorionic gonadotropin expression in recurrent and metastatic giant cell tumors of bone: a potential mimicker of germ cell tumor. Int J Surg Pathol. 2014;22(7):617–22. doi:10.1177/1066896914534466.

    Article  CAS  PubMed  Google Scholar 

  274. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  275. Rogers GE, Powell BC. Organization and expression of hair follicle genes. J Invest Dermatol. 1993;101(1 Suppl):50S–5S.

    Article  CAS  PubMed  Google Scholar 

  276. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM et al. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174(2):169–74. doi:10.1083/jcb.200603161.

  277. Hatzfeld M, Franke WW. Pair formation and promiscuity of cytokeratins: formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides. J Cell Biol. 1985;101(5 Pt 1):1826–41.

    Article  CAS  PubMed  Google Scholar 

  278. Battifora H, Sheibani K, Tubbs RR, Kopinski MI, Sun TT. Antikeratin antibodies in tumor diagnosis. Distinction between seminoma and embryonal carcinoma. Cancer. 1984;54(5):843–8.

    Article  CAS  PubMed  Google Scholar 

  279. Miettinen M, Virtanen I, Talerman A. Intermediate filament proteins in human testis and testicular germ-cell tumors. Am J Pathol. 1985;120(3):402–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Denk H, Moll R, Weybora W, Lackinger E, Vennigerholz F, Beham A, et al. Intermediate filaments and desmosomal plaque proteins in testicular seminomas and non-seminomatous germ cell tumours as revealed by immunohistochemistry. Virchows Archiv A Pathol Anat Histopathol. 1987;410(4):295–307.

    Article  CAS  Google Scholar 

  281. Lifschitz-Mercer B, Fogel M, Moll R, Jacob N, Kushnir I, Livoff A, et al. Intermediate filament protein profiles of human testicular non-seminomatous germ cell tumors: correlation of cytokeratin synthesis to cell differentiation. Differentiation. 1991;48(3):191–8.

    Article  CAS  PubMed  Google Scholar 

  282. Cheville JC, Rao S, Iczkowski KA, Lohse CM, Pankratz VS. Cytokeratin expression in seminoma of the human testis. Am J Clin Pathol. 2000;113(4):583–8. doi:10.1309/3QLC-5MF1-JYXU-A5XX.

    Article  CAS  PubMed  Google Scholar 

  283. Ramalingam P, Malpica A, Silva EG, Gershenson DM, Liu JL, Deavers MT. The use of cytokeratin 7 and EMA in differentiating ovarian yolk sac tumors from endometrioid and clear cell carcinomas. Am J Surg Pathol. 2004;28(11):1499–505.

    Article  PubMed  Google Scholar 

  284. Walters JR, Howard A, Rumble HE, Prathalingam SR, Shaw-Smith CJ, Legon S. Differences in expression of homeobox transcription factors in proximal and distal human small intestine. Gastroenterology. 1997;113(2):472–7.

    Article  CAS  PubMed  Google Scholar 

  285. Suh N, Yang XJ, Tretiakova MS, Humphrey PA, Wang HL. Value of CDX2, villin, and alpha-methylacyl coenzyme A racemase immunostains in the distinction between primary adenocarcinoma of the bladder and secondary colorectal adenocarcinoma. Mod Pathol. 2005;18(9):1217–22. doi:10.1038/modpathol.3800407.

    Article  CAS  PubMed  Google Scholar 

  286. Jedrusik A, Cox A, Wicher K, Glover DM, Zernicka-Goetz M. Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition. Dev Biol. 2015;398(2):147–52. doi:10.1016/j.ydbio.2014.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, et al. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell. 2014;30(4):410–22. doi:10.1016/j.devcel.2014.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Chawengsaksophak K, de Graaff W, Rossant J, Deschamps J, Beck F. Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci U S A. 2004;101(20):7641–5. doi:10.1073/pnas.0401654101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Moskaluk CA, Zhang H, Powell SM, Cerilli LA, Hampton GM, Frierson HF. Cdx2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol: Off J US Canadian Acad Pathol Inc. 2003;16(9):913–9.

    Article  Google Scholar 

  290. Nicolae A, Goyenaga P, McCluggage WG, Preda O, Nogales FF. Endometrial intestinal metaplasia: a report of two cases, including one associated with cervical intestinal and pyloric metaplasia. Int J Gynecol Pathol. 2011;30(5):492–6. doi:10.1097/PGP.0b013e318211d586.

    Article  PubMed  Google Scholar 

  291. Søren Nielsen RR, Mogens Vyberg. NordiQC CDX2 Assessment Run 38 2013. NordiQC, http://www.nordiqc.org/Run-38/Assessment/assessment-38-CDX2.htm. 2013.

  292. Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol. 2003;27(3):303–10.

    Article  PubMed  Google Scholar 

  293. Groisman GM, Bernheim J, Halpern M, Brazowsky E, Meir A. Expression of the intestinal marker Cdx2 in secondary adenocarcinomas of the colorectum. Arch Pathol Lab Med. 2005;129(7):920–3. doi:10.1043/1543-2165(2005)129[920:EOTIMC]2.0.CO;2.

    PubMed  Google Scholar 

  294. Saad RS, Ghorab Z, Khalifa MA, Xu M. CDX2 as a marker for intestinal differentiation: Its utility and limitations. World J Gastrointest Surg. 2011;3(11):159–66. doi:10.4240/wjgs.v3.i11.159.

    Article  PubMed  PubMed Central  Google Scholar 

  295. Houghton O, Connolly LE, McCluggage WG. Morules in endometrioid proliferations of the uterus and ovary consistently express the intestinal transcription factor CDX2. Histopathology. 2008;53(2):156–65. doi:10.1111/j.1365-2559.2008.03083.x.

    Article  CAS  PubMed  Google Scholar 

  296. Osunkoya AO, Epstein JI. Primary mucin-producing urothelial-type adenocarcinoma of prostate: report of 15 cases. Am J Surg Pathol. 2007;31(9):1323–9. doi:10.1097/PAS.0b013e31802ff7c4.

    Article  PubMed  Google Scholar 

  297. Paner GP, McKenney JK, Barkan GA, Yao JL, Frankel WL, Sebo TJ, et al. Immunohistochemical analysis in a morphologic spectrum of urachal epithelial neoplasms: diagnostic implications and pitfalls. Am J Surg Pathol. 2011;35(6):787–98. doi:10.1097/PAS.0b013e3182189c11.

    Article  PubMed  Google Scholar 

  298. Franchi A, Palomba A, Miligi L, Ranucci V, Innocenti DR, Simoni A, et al. Intestinal metaplasia of the sinonasal mucosa adjacent to intestinal-type adenocarcinoma. A morphologic, immunohistochemical, and molecular study. Virchows Arch. 2015;466(2):161–8. doi:10.1007/s00428-014-1696-1.

    Article  CAS  PubMed  Google Scholar 

  299. Saqi A, Alexis D, Remotti F, Bhagat G. Usefulness of CDX2 and TTF-1 in differentiating gastrointestinal from pulmonary carcinoids. Am J Clin Pathol. 2005;123(3):394–404. doi:10.1309/UKN6-PVRK-XHG4-22DA.

    Article  PubMed  Google Scholar 

  300. Desouki MM, Lioyd J, Xu H, Cao D, Barner R, Zhao C. CDX2 may be a useful marker to distinguish primary ovarian carcinoid from gastrointestinal metastatic carcinoids to the ovary. Hum Pathol. 2013;44(11):2536–41. doi:10.1016/j.humpath.2013.06.014.

    Article  CAS  PubMed  Google Scholar 

  301. Scholl C, Bansal D, Dohner K, Eiwen K, Huntly BJ, Lee BH, et al. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J Clin Invest. 2007;117(4):1037–48. doi:10.1172/JCI30182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Riedt T, Ebinger M, Salih HR, Tomiuk J, Handgretinger R, Kanz L, et al. Aberrant expression of the homeobox gene CDX2 in pediatric acute lymphoblastic leukemia. Blood. 2009;113(17):4049–51. doi:10.1182/blood-2008-12-196634.

    Article  CAS  PubMed  Google Scholar 

  303. Khurana S, George SP. Regulation of cell structure and function by actin-binding proteins: villin’s perspective. FEBS Lett. 2008;582(14):2128–39. doi:10.1016/j.febslet.2008.02.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Wang Y, Srinivasan K, Siddiqui MR, George SP, Tomar A, Khurana S. A novel role for villin in intestinal epithelial cell survival and homeostasis. J Biol Chem. 2008;283(14):9454–64. doi:10.1074/jbc.M707962200.

    Article  CAS  PubMed  Google Scholar 

  305. Rousseau-Merck MF, Simon-Chazottes D, Arpin M, Pringault E, Louvard D, Guenet JL, et al. Localization of the villin gene on human chromosome 2q35-q36 and on mouse chromosome 1. Hum Genet. 1988;78(2):130–3.

    Article  CAS  PubMed  Google Scholar 

  306. Phillips MJ, Azuma T, Meredith SL, Squire JA, Ackerley CA, Pluthero FG, et al. Abnormalities in villin gene expression and canalicular microvillus structure in progressive cholestatic liver disease of childhood. Lancet. 2003;362(9390):1112–9. doi:10.1016/S0140-6736(03)14467-4.

    Article  CAS  PubMed  Google Scholar 

  307. Wong HH, Chu P. Immunohistochemical features of the gastrointestinal tract tumors. J Gastrointest Oncol. 2012;3(3):262–84.

    PubMed  PubMed Central  Google Scholar 

  308. Bacchi CE, Gown AM. Distribution and pattern of expression of villin, a gastrointestinal-associated cytoskeletal protein, in human carcinomas: a study employing paraffin-embedded tissue. Lab Investig. 1991;64(3):418–24.

    CAS  PubMed  Google Scholar 

  309. West AB, Isaac CA, Carboni JM, Morrow JS, Mooseker MS, Barwick KW. Localization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasms. Gastroenterology. 1988;94(2):343–52.

    Article  CAS  PubMed  Google Scholar 

  310. Moll R, Robine S, Dudouet B, Louvard D. Villin: a cytoskeletal protein and a differentiation marker expressed in some human adenocarcinomas. Virchows Archiv B Cell Pathol Includ Mol Pathol. 1987;54(3):155–69.

    Article  CAS  Google Scholar 

  311. Wennerberg AE, Nalesnik MA, Coleman WB. Hepatocyte paraffin 1: a monoclonal antibody that reacts with hepatocytes and can be used for differential diagnosis of hepatic tumors. Am J Pathol. 1993;143(4):1050–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Butler SL, Dong H, Cardona D, Jia M, Zheng R, Zhu H, et al. The antigen for Hep Par 1 antibody is the urea cycle enzyme carbamoyl phosphate synthetase 1. Lab Investig. 2008;88(1):78–88. doi:10.1038/labinvest.3700699.

    Article  CAS  PubMed  Google Scholar 

  313. Pang Y, von Turkovich M, Wu H, Mitchell J, Mount S, Taatjes D, et al. The binding of thyroid transcription factor-1 and hepatocyte paraffin 1 to mitochondrial proteins in hepatocytes: a molecular and immunoelectron microscopic study. Am J Clin Pathol. 2006;125(5):722–6. doi:10.1309/EBCB-6H54-K1N2-P9QL.

    Article  CAS  PubMed  Google Scholar 

  314. Haberle J, Shchelochkov OA, Wang J, Katsonis P, Hall L, Reiss S, et al. Molecular defects in human carbamoyl phosphate synthetase I: mutational spectrum, diagnostic and protein structure considerations. Hum Mutat. 2011;32(6):579–89. doi:10.1002/humu.21406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  315. Jeung JA, Coran JJ, Liu C, Cardona DM. Hepatocyte paraffin 1 antigen as a biomarker for early diagnosis of Barrett esophagus. Am J Clin Pathol. 2012;137(1):111–20. doi:10.1309/AJCPYOBVGS4CGA8Y.

    Article  PubMed  PubMed Central  Google Scholar 

  316. Kakar S, Muir T, Murphy LM, Lloyd RV, Burgart LJ. Immunoreactivity of Hep Par 1 in hepatic and extrahepatic tumors and its correlation with albumin in situ hybridization in hepatocellular carcinoma. Am J Clin Pathol. 2003;119(3):361–6.

    Article  PubMed  Google Scholar 

  317. Fan Z, van de Rijn M, Montgomery K, Rouse RV. Hep par 1 antibody stain for the differential diagnosis of hepatocellular carcinoma: 676 tumors tested using tissue microarrays and conventional tissue sections. Mod Pathol. 2003;16(2):137–44. doi:10.1097/01.MP.0000052103.13730.20.

    Article  PubMed  Google Scholar 

  318. Thorwarth A, Schnittert-Hubener S, Schrumpf P, Muller I, Jyrch S, Dame C, et al. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. J Med Genet. 2014;51(6):375–87. doi:10.1136/jmedgenet-2013-102248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Trueba SS, Auge J, Mattei G, Etchevers H, Martinovic J, Czernichow P, et al. PAX8, TITF1, and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations. J Clin Endocrinol Metab. 2005;90(1):455–62. doi:10.1210/jc.2004-1358.

    Article  CAS  PubMed  Google Scholar 

  320. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450(7171):893–8. doi:10.1038/nature06358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Shetty VB, Kiraly-Borri C, Lamont P, Bikker H, Choong CS. NKX2-1 mutations in brain-lung-thyroid syndrome: a case series of four patients. J Pediat Endocrinol Metabol: JPEM. 2014;27(3–4):373–8. doi:10.1515/jpem-2013-0109.

    CAS  Google Scholar 

  322. Zamecnik J, Chanova M, Kodet R. Expression of thyroid transcription factor 1 in primary brain tumours. J Clin Pathol. 2004;57(10):1111–3. doi:10.1136/jcp.2004.017467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Matoso A, Singh K, Jacob R, Greaves WO, Tavares R, Noble L, et al. Comparison of thyroid transcription factor-1 expression by 2 monoclonal antibodies in pulmonary and nonpulmonary primary tumors. Appl Immunohistochem Mol Morphol. 2010;18(2):142–9. doi:10.1097/PAI.0b013e3181bdf4e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Comperat E, Zhang F, Perrotin C, Molina T, Magdeleinat P, Marmey B, et al. Variable sensitivity and specificity of TTF-1 antibodies in lung metastatic adenocarcinoma of colorectal origin. Mod Pathol. 2005;18(10):1371–6. doi:10.1038/modpathol.3800422.

    Article  CAS  PubMed  Google Scholar 

  325. Gu K, Shah V, Ma C, Zhang L, Yang M. Cytoplasmic immunoreactivity of thyroid transcription factor-1 (clone 8G7G3/1) in hepatocytes: true positivity or cross-reaction? Am J Clin Pathol. 2007;128(3):382–8. doi:10.1309/CADCVWHR2QF6JMVN.

    Article  CAS  PubMed  Google Scholar 

  326. Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med. 2008;132(3):359–72. doi:10.1043/1543-2165(2008)132[359:AOITTN]2.0.CO;2.

    PubMed  Google Scholar 

  327. Nakamura N, Miyagi E, Murata S, Kawaoi A, Katoh R. Expression of thyroid transcription factor-1 in normal and neoplastic lung tissues. Mod Pathol: Off J US Canadian Acad Pathol Inc. 2002;15(10):1058–67.

    Article  Google Scholar 

  328. Rajpert-De Meyts E, Jacobsen GK, Bartkova J, Aubry F, Samson M, Bartek J, et al. The immunohistochemical expression pattern of Chk2, p53, p19INK4d, MAGE-A4 and other selected antigens provides new evidence for the premeiotic origin of spermatocytic seminoma. Histopathology. 2003;42(3):217–26.

    Article  CAS  PubMed  Google Scholar 

  329. Kang JL, Rajpert-De Meyts E, Skakkebaek NE. Immunoreactive neuron-specific enolase (NSE) is expressed in testicular carcinoma-in-situ. J Pathol. 1996;178(2):161–5. doi:10.1002/(SICI)1096-9896(199602)178:2<161::AID-PATH452>3.0.CO;2-H.

    Article  CAS  PubMed  Google Scholar 

  330. Zeeman AM, Stoop H, Boter M, Gillis AJ, Castrillon DH, Oosterhuis JW, et al. VASA is a specific marker for both normal and malignant human germ cells. Lab Investig. 2002;82(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  331. Aggarwal N, Parwani AV. Spermatocytic seminoma. Arch Pathol Lab Med. 2009;133(12):1985–8. doi:10.1043/1543-2165-133.12.1985.

    PubMed  Google Scholar 

  332. Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP. The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A. 2000;97(17):9585–90. doi:10.1073/pnas.160274797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Ko HS, Fast P, McBride W, Staudt LM. A human protein specific for the immunoglobulin octamer DNA motif contains a functional homeobox domain. Cell. 1988;55(1):135–44.

    Article  CAS  PubMed  Google Scholar 

  334. Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7(4):502–8. doi:10.1038/ng0894-502.

    Article  CAS  PubMed  Google Scholar 

  335. Martelange V, De Smet C, De Plaen E, Lurquin C, Boon T. Identification on a human sarcoma of two new genes with tumor-specific expression. Cancer Res. 2000;60(14):3848–55.

    CAS  PubMed  Google Scholar 

  336. Lim J, Goriely A, Turner GD, Ewen KA, Jacobsen GK, Graem N, et al. OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. J Pathol. 2011;224(4):473–83. doi:10.1002/path.2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Looijenga LH. Spermatocytic seminoma: toward further understanding of pathogenesis. J Pathol. 2011;224(4):431–3. doi:10.1002/path.2939.

    Article  PubMed  Google Scholar 

  338. Cybulski C, Gorski B, Huzarski T, Masojc B, Mierzejewski M, Debniak T, et al. CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet. 2004;75(6):1131–5. doi:10.1086/426403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Rogner UC, Wilke K, Steck E, Korn B, Poustka A. The melanoma antigen gene (MAGE) family is clustered in the chromosomal band Xq28. Genomics. 1995;29(3):725–31. doi:10.1006/geno.1995.9945.

    Article  CAS  PubMed  Google Scholar 

  340. Bishop EF, Badve S, Morimiya A, Saxena R, Ulbright TM. Apoptosis in spermatocytic and usual seminomas: a light microscopic and immunohistochemical study. Mod Pathol. 2007;20(10):1036–44. doi:10.1038/modpathol.3800933.

    Article  CAS  PubMed  Google Scholar 

  341. Chen YT, Boyer AD, Viars CS, Tsang S, Old LJ, Arden KC. Genomic cloning and localization of CTAG, a gene encoding an autoimmunogenic cancer-testis antigen NY-ESO-1, to human chromosome Xq28. Cytogenet Cell Genet. 1997;79(3–4):237–40.

    Article  CAS  PubMed  Google Scholar 

  342. Kao CS, Badve SS, Ulbright TM. The utility of immunostaining for NUT, GAGE7 and NY-ESO-1 in the diagnosis of spermatocytic seminoma. Histopathology. 2014;65(1):35–44. doi:10.1111/his.12365.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco F. Nogales MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Preda, O., Nogales, F.F. (2017). Diagnostic Immunopathology of Germ Cell Tumors. In: Nogales, F., Jimenez, R. (eds) Pathology and Biology of Human Germ Cell Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53775-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53775-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53773-2

  • Online ISBN: 978-3-662-53775-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics