Advertisement

Die Bedeutung der Biotechnologie für die Bioökonomie

  • Manfred Kircher
  • Michael Bott
  • Jan Marienhagen
Chapter

Zusammenfassung

In ihrer klassischen wie in ihrer modernen Form sind biotechnologische Verfahren für die Aufbereitung und Verarbeitung von Biomasse für die nachhaltige Produktion unzähliger Güter unverzichtbar. Diese Verfahren, bei denen die natürlichen Stoffwechselkapazitäten lebender Systeme oder Teilen von Ihnen genutzt werden, spielen deshalb eine Schlüsselrolle in der Bioökonomie. In Zukunft wird die synthetische Biologie zusätzlich natürliche biologische Systeme zu völlig neuen Funktionseinheiten umgestalten, die so in der Natur nicht vorkommen und vordefinierte Aufgaben übernehmen können. Dieses Kapitel beschreibt in seinem ersten Teil Produktionsverfahren, die sich mit biotechnologischen Mitteln der Hilfe von Mikroorganismen, Enzymen, Pflanzen und Tieren bedienen, um Nahrungs- und Futtermittel, Pharmaka, Chemieprodukte und Energieträger herzustellen. In seinem zweiten Teil wirft es einen Blick auf die Perspektiven der synthetischen Biologie.

Literatur

  1. Aquabounty. https://aquabounty.com. Zugegriffen: 14. Sept. 2016
  2. Bessler C et al (2003) Directed evolution of a bacterial α-amylase: Towards enhanced pH-performance and higher specific activity. Protein Sci 10:2141–2149Google Scholar
  3. Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40CrossRefPubMedPubMedCentralGoogle Scholar
  4. Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41:6360–6369CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bobo J (2015) First Bioeconomy Summit, Berlin. http://gbs2015.com/fileadmin/gbs2015/Downloads/Bioeconomy_World_Tour.pdf. Zugegriffen: 14. Sept. 2016Google Scholar
  6. Bott M, Eggeling L (2016) Novel technologies for optimal strain breeding. In: Yokota A, Ikeda M (Hrsg) Amino Acid Fermentation. Springer, JapanGoogle Scholar
  7. Carlson ED et al (2012) Cell-Free protein synthesis: Applications come of age. Biotechnol Adv 30(5):1185–1194 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038126/figure/F2/)CrossRefPubMedGoogle Scholar
  8. Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34(5):479–81. doi:10.1038/nbt.3560Google Scholar
  9. Castellanos-Hernández OA et al (2011) Genetic transformation of forest trees. In: Alvarez M (Hrsg) In Intech; Genetic Transformation. Chapter 10 ISBN 978-9533073644 doi: 10.5772/868Google Scholar
  10. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388, doi: 10.1146/annurev.genet.36.061102.093104 CrossRefPubMedGoogle Scholar
  11. Daniell J, Köpke M, Simpson SD (2012) Review: Commercial Biomass Syngas Fermentation. Energies 5:5372–5417. doi: 10.3390/en5125372, energies ISSN 1996-1073, www.mdpi.com/journal/energies CrossRefGoogle Scholar
  12. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394CrossRefPubMedGoogle Scholar
  13. Eggeling L, Bott M, Marienhagen J (2015) Novel screening methods-biosensors. Curr Opin Biotechnol 35:30–36CrossRefPubMedGoogle Scholar
  14. Feher T, Papp B, Pal C, Posfai G (2007) Systematic genome reductions: theoretical and experimental approaches. Chem Rev 107:3498–3513CrossRefPubMedGoogle Scholar
  15. Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361CrossRefPubMedGoogle Scholar
  16. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56CrossRefPubMedGoogle Scholar
  17. Hirokawa Y, Kawano H, Tanaka-Masuda K, Nakamura N, Nakagawa A, Ito M, Mori H, Oshima T, Ogasawara N (2013) Genetic manipulations restored the growth fitness of reduced-genome Escherichia coli. J Biosci Bioeng 116:52–58CrossRefPubMedGoogle Scholar
  18. Hutchison CA 3rd, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF, Qi ZQ, Richter RA, Strychalski EA, Sun L, Suzuki Y, Tsvetanova B, Wise KS, Smith HO, Glass JI, Merryman C, Gibson DG, Venter JC (2016) Design and synthesis of a minimal bacterial genome. Science 351:aad6253CrossRefPubMedGoogle Scholar
  19. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  20. Jones S (2016) How to cut cost in fermentation and bio-catalysis. BIO World Congress on Industrial Biotechnology, San Diego (USA), 18.–20.4.2016.Google Scholar
  21. Juhas M, Reuss DR, Zhu B, Commichau FM (2014) Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology 160:2341–2351CrossRefPubMedGoogle Scholar
  22. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163(2):166–178. doi: 10.1016/j.jbiotec.2012.06.001 CrossRefPubMedGoogle Scholar
  23. Martin CH, Nielsen DR, Solomon KV, Prather KL (2009) Synthetic metabolism: engineering biology at the protein and pathway scales. Chem Biol 16:277–286CrossRefPubMedGoogle Scholar
  24. Mizoguchi H, Sawano Y, Kato J, Mori H (2008) Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Res 15:277–284CrossRefPubMedPubMedCentralGoogle Scholar
  25. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367CrossRefPubMedGoogle Scholar
  26. Posfai G, Plunkett G, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046CrossRefPubMedGoogle Scholar
  27. Pul et al (2016) CRISPR in der biotechnologischen Forschung und Entwicklung. BIOspektrum 22:62–64CrossRefGoogle Scholar
  28. Sahm H, Eggeling L (2009) Mikrobielle Aminosäurefermentation. In: Antranikian G (Hrsg) Angewandte Mikrobiologie. Springer, Berlin, Heidelberg, S 290–304Google Scholar
  29. Schendzielorz G, Dippong M, Grünberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L (2014) Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol 3:21–29CrossRefPubMedGoogle Scholar
  30. Siedler S, Schendzielorz G, Binder S, Eggeling L, Bringer S, Bott M (2014) SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli. ACS Synth Biol 3:41–47CrossRefPubMedGoogle Scholar
  31. Staropoli N (2016) No-till agriculture offers vast sustainability benefits. So why do many organic farmers reject it? Genetic Literacy Project. https://www.geneticliteracyproject.org/2016/06/02/no-till-agriculture-offers-vast-sustainability-benefits-so-why-do-organic-farmers-reject-it/ (Erstellt: June 2, 2016)Google Scholar
  32. Tanaka K, Henry CS, Zinner JF, Jolivet E, Cohoon MP, Xia FF, Bidnenko V, Ehrlich SD, Stevens RL, Noirot P (2013) Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res 41:687–699CrossRefPubMedGoogle Scholar
  33. Unthan S et al (2015) Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 10(2):290–301. doi: 10.1002/biot.201400041
  34. VIT_Vellore Team (2011) Biobrick circuit. http://2011.igem.org/Team:VIT_Vellore/Project. Zugegriffen: 26.09. 2016Google Scholar
  35. World Health Organization (2015) WHO Malaria Bericht. Geneva. ISBN 978-9241565158Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Manfred Kircher
    • 1
  • Michael Bott
    • 2
  • Jan Marienhagen
    • 2
  1. 1.Kircher Advice in Bioeconomy (KADIB)FrankfurtDeutschland
  2. 2.Institut für Bio- und GeowissenschaftenForschungszentrum JülichJülichDeutschland

Personalised recommendations