Skip to main content

Soil Resources Mapping

  • Chapter
  • First Online:
Remote Sensing of Soils

Abstract

Information on soils with regard to their nature, extent, spatial distribution, potential and limitations is a pre-requisite for sustained agriculture production, land valuation for taxation and developmental planning. Soil resources inventories provide such information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbu, P.A and Niziyimana, E., 1991. Comparisons between spectral units derived from SPOT imagae texture and field soil map units. Photogrammetric. Engineering and Remote Sensing 4: 397–405.

    Google Scholar 

  • All India Soil and Land Use Survey, 1970. Soil Survey Manual. Al India Soil and Land Use Survey, Department of Agriculture and Co-operation, Ministry of Agriculture, Government of India. New Delhi.

    Google Scholar 

  • Baret, F., Guyot, G., Major, D.J., 1989. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation, Geoscience and Remote Sensing Symposium, 1989. IGARSS’89/12th International Canadian Symposium on Remote Sensing. IEEE, New York, Vancouver, pp. 1355–1358.

    Google Scholar 

  • Bartholomeus, H., Epema, G., Schaepman, M.E., 2007. Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 9(2), 194–203.

    Google Scholar 

  • Ben-Dor, E., Taylor, R.G., Hill, J., Demattê, J.A.M., Whiting, M.L., Chabrillat, S. & Sommer, S. 2008. Imaging spectrometry for soil applications. In: Advances in Agronomy, volume 97 (ed). D. LSparks), pp. 321–392. Academic Press, Elsevier.

    Google Scholar 

  • Ben-Dor E., S. Chabrillat, J.A.M. Demattê, G.R. Taylor, J. Hill, M.L. Whiting and S. Somme 2009. Using Imaging Spectroscopy to study soil properties. Remote Sensing of Environment113(2009):S38–S55.

    Google Scholar 

  • Bennema, J. and Gelens, H.F., 1969a. Aerial Photo-interpretation for Soil Surveys. Lecture Notes ITC, Enschede, The Netherlands: pp 1–87.

    Google Scholar 

  • Bennema, J. and Gelens, H.F., 1969b. A erial Photo-interpretation for Soil Surveys. International Institute for Aerial Surveys and Earth Science, Delft. p 87.

    Google Scholar 

  • Bishop, Y., S. Fienberg, and P. Holland, 1975. Discrete Multivariate Analysis-Theory and Practices, MIT Press, Cambridge, Massachusetts, 575 p.

    Google Scholar 

  • Biswas, R.R., 1987. A soil map through Landsat satellite imagery in a part of the Auranga catchment in the Ranchi and Palamu districts of Bihar, India. International Journal of Remote Sensing. 8(4):541–543.

    Google Scholar 

  • Bouma, J., 1981. Using Soil Survey Data for Quantitative Land Evaluation. Advances in Soil Science. Volume 9 of the series Advances in Soil Science pp 177–213.

    Google Scholar 

  • Brennan, R., and T. L. Webster (2006), Object -oriented land cover classification of lidar -derived surfaces, Canadian journal of remote sensing 32(2), 162–172.

    Google Scholar 

  • Buis G.M., Blair J.M., Burkepile D.E., Burns C.E., Chamberlain A.J., Chapman P.L., Collins SL, Fynn RWS, Govender N, Kirkman KP. 2009. Controls of aboveground net primary production in mesic savanna grasslands: an inter-hemispheric comparison. Ecosystems 12, 982–995.

    Google Scholar 

  • Buol S.W., Hole F.D., McCracken R.J., and Southard R.J., 1997. Soil Genesis and Classification. Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Buringh, P., 1960. The application of Aerial Photography in Soil Surveys. Manual of Photographic Interpretation: pp 631–666.

    Google Scholar 

  • Bushnell, T., 1929. Aerial photography and soil survey. Am. Assoc. Soil Survey. Bull. 10,23–28.

    Google Scholar 

  • Bushnell, T.M., 1932. A new technique in soil mapping. American Soil Survey Association Bulletin. 13:74–81.

    Google Scholar 

  • Butler, B.E., 1969. Periodic phenomena in landscape as basis for soil studies. CSIRO Soil Publication 14, 20 pp

    Google Scholar 

  • Carré F, McBratney AB, Mayr T, Montanarella L. Digital soil assessments: beyond DSM. Geoderma. 2007; 142:69–7.

    Google Scholar 

  • Chen, X., R. Tateishi, and C. Wang (1999). Development of a 1-km landcover dataset of China using AVHRR data, ISPRS Journal of Photogrammetry and Remote Sensing, 54 (5–6), 305–36.

    Google Scholar 

  • Christian, C. S. and Stewart, G. A., 1968. Methodology of Integrated Surveys. In Aerial Surveys and Integrated Studies. Proceedings Toulouse Conference.1964. Natural Resources Service, UNESCO 6.

    Google Scholar 

  • Congalton, R., R. Oderwald, and R. Mead, 1983. A quantitative method to test for consistency and correctness in photo interpretation, Photogrammetric Engineering & Remote Sensing, 49(1):69–74.

    Google Scholar 

  • Dewitte, O., A. Jones, H. Elbelrhiti, S. Horion, and L. Montanarella (2012), Satellite remote sensing for soil mapping in Africa: An overview, Progress inphysical geography, 36(4), 514–538.

    Google Scholar 

  • Dhir, R.P., 1974. An approach to use of aerial photographs in small scale soil mapping based on experience of Jodhpur district, Rajasthan. Journal of the Indian Society of Remote Sensing. 1. pp 13–18.

    Google Scholar 

  • Diekmann, M., 2003. Species indicator values as an important tool in applied plant ecology—a review. Basic Appl. Ecol. 4 (6), 493–506.

    Google Scholar 

  • Dominiquez, O.A., 1960. A comparative analysis of black and white aerial photographs as aids in the mapping of soil in wildland area.In Manual of Photo-inter-pretation. American Society of Photogrammetry. Washington, D.C. 398–402.

    Google Scholar 

  • Doolittle J.A., Eric C. Brevik, 2014. The use of electromagnetic induction techniques in soils studies Geoderma 223–225 (2014) 33–45.

    Google Scholar 

  • Dorigo, W.A., et al., 2007. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 9(2), 165–193.

    Google Scholar 

  • Dwivedi, R. S., 1984. Utility of some image enhancement techniques for reconnaissance soil mapping: A case study from Southern India. Proceedings of the International Symposium on Machine Processing of Remotely Sensed Data with Special reference to Thematic Mapper Data and Geographic Information System Laboratory for Applications of Remote Sensing, Purdue University, Indiana, USA, June 12–14, 1984.

    Google Scholar 

  • Dwivedi, R.S., 1985. The utility of data from various airborne sensors for soil mapping. International Journal of Remote Sensing 6 (1): 89–100.

    Google Scholar 

  • Dwivedi, R.S., Ramana, K.V., Thammappa, S.S. and Singh, A.N., 2001. The utility of IRS-1C LISS-III and PAN-merged data for mapping salt-affected soils. Photgrammetric Engineering and Remote Sensing 67(10):1167–1176.

    Google Scholar 

  • Dwivedi, R.S., R.V. Kothapalli, and A.N. Singh. 2008. Generation of farm -level information on salt-affected soils using IKONOS-II multispectral data. p. 73–90. In G. Metternicht and J.A. Zinck (ed.) Remote sensing of soil salinization: Impact on land management. CRC Press, Taylor & Francis, Boca Raton, FL.

    Google Scholar 

  • Dwivedi, R.. S., Ravisankar, T and Rao, B.R.M. 2016a. Soil Resources..In Dwivedi, R.S. and Roy, P.S. (eds.) Geospatial Technologies for Integrated Natural Resources Management. Yes Dee publishers, Chennai, India.

    Google Scholar 

  • Dwivedi, R.. S., Ravisankar, T and Sreenivas, K., 2016b. Watershed management. In Geospatial Technologies for Integrated Natural Resources Management. Yes Dee publishers, Chennai, India.

    Google Scholar 

  • Ellenberg, H. 1988. Vegetation Ecology of Central Europe. Cambridge University Press, Cambridge.

    Google Scholar 

  • Evans, R., 1990. Discrimination and monitoring of soils. In applications of remote sensing in Agriculture. (Eds M.D. Steven & J.A. Clark) Butterworths, London.

    Google Scholar 

  • Everitt, J.H., Escobar, D.E., Gerbermann, A.H. and Alaniz, M.A., 1988. Detecting saline soils with video imagery. Photogramm. Eng. Remote Sens., 54: 1283–1287.

    Google Scholar 

  • FAO-UNESCO, 1974. FAO-UNESCO Soil map of the world 1:5,000,000. Vol.-1, Legend. Printed by Tipolitografia F. Failli, Rome Published by the United Nations Educational, Scientific and Cultural Organization, Place de Fontenoy, 75700 p

    Google Scholar 

  • FAO, 1976. A framework for land evaluation. FAO Soils bulletin 32. FAO, Rome, Italy.

    Google Scholar 

  • FAO 1993. World Soil Resources. An Explanatory Note on the FAO World Soil Resources Map at 1:25000000 scale. World Soil Resources Report No 66, Rev 1, FAO, Rome.

    Google Scholar 

  • FAO-UNESCO 1971–1981. Soil Map of the World. Legend and 9 volumes. Unesco, Paris.

    Google Scholar 

  • Gessler, P.E., Moore, I.D., McKenzie, N.J., Ryan, P.J., 1995. Soil-landscape modelling and spatial prediction of soil attributes. International Journal of Geographical Information Systems 9, 421– 432.

    Google Scholar 

  • Goosen, D., 1967. Aerial Photo-interpretation in Soil Survey. FAO Soils Bulletin No.6:pp 1–55.

    Google Scholar 

  • Grunwald, S. (2010). The current state of digital soil mapping and what is next, in Digital soil mapping: Bridging research, production and environmental applications, edited by J. Boetinger, D. W. Howell, A. C. Moore, A. E. Hartemink and S. Kienst-Brown, pp. 3–12, Springer, Heidelberg.

    Google Scholar 

  • Grunwald, S. (2011). Digital soil mapping and modeling at continental scales: Finding solutions forglobal issues, Soil Science Society of America Journal, 75(4), 1201–1213.

    Google Scholar 

  • Gupta, R. K., D. Vijayan, and T. S. Prasad (2001). New hyperspectral vegetation characterization parameters, Advances in Space Research, 28(1), 201–206.

    Google Scholar 

  • Hartemink AE, Minasny B (2014) Towards digital soil morphometrics. Geoderma 230–231:305–317

    Google Scholar 

  • Heuvelink, G.B.M., Webster, R., 2001. Modelling soil variation: past, present, and future. Geoderma 100(3–4), 269–301.

    Google Scholar 

  • Hill, M.O., Roy, D.B., Mountford, J.O., Bunce, R.G.H., 2000. Extending Ellenberg’s indicator values to a new area: an algorithmic approach. J. Appl. Ecol. 37 (1), 3–15.

    Google Scholar 

  • Hilwig, F.W. and Karale, R.L.,1973. Physiographic systems and elements of photo-interpretation as applied to soil survey in Ganges plain. Journal of the Indian Society of Remote Sensing. 21(2):205–212.

    Google Scholar 

  • Hole, F.D., 1981. Effects of animals on soil. Geoderma 25, 75–112.

    Google Scholar 

  • Hodgson, Michael E., John R. Jensen, Jason A. Tullis, Kevin D. Riordan, and Clark M. Arche, 2006. Synergistic Use of Lidar and Color Aerial Photography for Mapping Urban Parcel Imperviousness. Photogrammetric Engineering & Remote Sensing. 69(9): pp. 973–980.

    Google Scholar 

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, Journal of Hydrometeorology, 8 (1), 38–38.

    Google Scholar 

  • Hutchinson, M. F. (1998a). Interpolation of rainfall data with thin plate smoothing splines: II. Analysis of topographic dependence, Journal of Geographic Information and Decision Analysis, 2 (2), 168–185.

    Google Scholar 

  • Hutchinson, M. F. (1998b). Interpolation of rainfall data with thin plate smoothing splines: I two dimensional smoothing of data with short range correlation, Journal of Geographic Information and Decision Analysis, (2), 152–167.

    Google Scholar 

  • Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25(3), 295–309.

    Google Scholar 

  • IIASA; FAO; ISRIC; ISS-CAS; JRC (2012) Harmonized World Soil Database (version 1.2). FAO and IIASA, Rome, Italy and Luxemburg, Austria.

    Google Scholar 

  • IUSS Working Group WRB 2006. World reference base for soil resources: A framework for international classification, correlation and communication. World Soil Resources Report 103. Food and Agriculture Organization of The United Nations, Rome, 2006.

    Google Scholar 

  • IUSS Working Group WRB, 2015. World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps-Update 2015. Food and Agriculture Organization of the United Nations Rome, 2015.

    Google Scholar 

  • IUSS Working Group WRB. 2007. World Reference Base for Soil Resources 2006, First Update 2007. FAO, Rome. http://www.fao.org/ag/agl/agll/wrb/doc/wrb2007_corr.pdf.

  • Jenny, H., 1941. Factors of soil formation: A system of quantitative pedology, McGraw Hill Book Company, Inc, New York, NY.

    Google Scholar 

  • Karale, R.L.1992. Remote sensing with IRS-1A in soil studies: development, status and prospects. pp. 128–143. In: R.L. Karale (ed.) Natural Resources Management-A New Perspective. NNRMS, Bangalore.

    Google Scholar 

  • Knotters, M., Brus, D.J., Oude Voshaar, J.H., 1995. A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma 67 (3–4), 227–246.

    Google Scholar 

  • Kovda, V. A. (ed). 1977. The Soil Map of the World, sclae 1:10 000 000, USSR Acad. Sci. Publishing House Moscow, USSR.

    Google Scholar 

  • Lagacherie, P., McBratney, A.B., Voltz, M. (ed.), 2007. Digital Soil Mapping: An Introductory Perspective. Developments in Soil Science, 31. Elsevier, Amsterdam.

    Google Scholar 

  • Lozano-Garcia, D.F., Fernandez, R.N., Johannsen, C.J., 1991. Assessment of regional biomass–soil relationships using vegetation indexes. IEEE Trans. Geosci. Remote Sens. 29 (2), 331–339.

    Google Scholar 

  • Mausbach, M J and G T Stubbendieck. 1987. Microcomputer processing and analysis of pedon descriptions. In: W. U. Reybold and G. W. Petersen (eds). Soil Survey Techniques. SSSA Spec Publ. No 20, pp 33–39.

    Google Scholar 

  • May, G.A. and Peterson, G.W., 1975. Spectral signature selection for mapping unirrigated soils. Remote Sensing of Environment. 4:211–220.

    Google Scholar 

  • McBratney Alex B., Inakwu O.A. Odeh Thomas F.A. Bishop, Marian S. Dunbar Tamara M. Shatar, 2000. An overview of pedometric techniques for use in soil survey Geoderma 97 2000. 293–327.

    Google Scholar 

  • McBratney, A.B. M.L. Mendon Santosb, B. Minasny. 2003. On digital soil mapping, Geoderma 117 (2003) 3–52.

    Google Scholar 

  • McKenzie, N. J., P. Gessler, P. J. Ryan, and D. A. O’Connell (2000), The role of terrain analysis in soil mapping, Terrain Analysis: Principles and Applications, 245–265.

    Google Scholar 

  • Miller, B.A, and R.J. Schaetzlc, 2016. History of soil geography in the context of scale. Geoderma 264 (2016) 284–300.

    Google Scholar 

  • Mirjakar, M.A. and Srinivasan, T.R., 1975. Landsat photo-interpretation for preparation of small scale soil maps through a multistage approach. Journal Indian Society of Remote Sensing III(2),87.

    Google Scholar 

  • Moore, I.D., Gessler, P.E., Nielsen, G.A., Peterson, G.A., 1993. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal. 57(2):447–452.

    Google Scholar 

  • Mu, Q., M. Zhao, and S. W. Running (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sensing of Environment,115(8), 1781–1800.

    Google Scholar 

  • Mulder, M.A.,1987. Remote Sensing in Soil Science. Elsevier, Oxford.

    Google Scholar 

  • Mulder, V.L., Bruin, S.de, Schaepman, M.E. and Mayr, T.R., 2011. The use of remote sensing in soil and terrain mapping-A review. Geoderma 162(2011):1–19.

    Google Scholar 

  • National Remote Sensing Agency, 1990. Landsat Thematic Mapper Data Applications-Illustratd examples. National Remote Sensig Agency, Department of Space, Government of India.

    Google Scholar 

  • National Remote Sensing Agency, 1997. Evaluation of IRS-1C data for mapping soil resources and degraded lands. Technical Report, National Remote Sensing Agency, Hyderabad.

    Google Scholar 

  • National Institute of Rural Development and National Remote Sensing Agency, 2007. Remote Sensing and GIS inputs for watershed development (Under National Rural Employment Guarantee Scheme). Project report, National Remote Sensing Agency, Hyderabad.

    Google Scholar 

  • Peterson, J.B.; F.E., Goodrick and W.N. Melhorn, 1975. Delineation of the boundaries of a buried pre-glacial valley with Landsat-1 data. Proc. 1st NASA Earth Resources Survey Symposium. Vol.1A Houston, Texas, pp 97–103.

    Google Scholar 

  • Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J., 1994. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 63 (3–4), 197–214.

    Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote Sens. Environ. 48 (2), 119–126.

    Google Scholar 

  • Rao, B.R.M., R.S. Dwivedi, L. Venkataratnam, T. Ravisankar, S.S. Thammappa, G.P. Bhargawa, and A.N. Singh, 1991. Mapping the magnitude of alkaliity in part of the Indo-Gangetic plains of Uttar Pradesh, northern India using Landsat-TM data, International Journal of Remote Sensing, 12(3):419–425.

    Google Scholar 

  • Richards, L.A. (editor), 1954. Diagnosis and Improvement of Saline and Alkali Soils, U.S. Department of Agriculture Handbook No.60, First Edition, U.S. Government Printing Office, Washington, D.C., 160 p.

    Google Scholar 

  • Rogan, J., Yool, S.R., 2001. Mapping fire-induced vegetation depletion in the Peloncillo Mountains, Arizona and New Mexico. Int. J. Remote Sens. 22 (16), 3101–3121.

    Google Scholar 

  • Rondeaux, G., Steven, M., Baret, F., 1996. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55 (2), 95–107.

    Google Scholar 

  • Rossiter, D.G., 2015. Digital soil resource inventories: Status and prospects in 2015 Proceedings6th Global Workshop on Digital Soil Mapping, Nanjing, 11–14. November 2014.

    Google Scholar 

  • Saby, N. P. A., Marchant, B. P., Lark, R. M., Jolivet, C. C., Ar-rouays, D., 2011. Robust geostatistical prediction of trace elements across france. Geoderma 162 (3–4), 303–311.

    Google Scholar 

  • Schmidtlein, S., 2005. Imaging spectroscopy as a tool for mapping Ellenberg indicator values. J. Appl. Ecol. 42 (5), 966–974.

    Google Scholar 

  • Singh, D., et al., 2006. Environmental degradation analysis using NOAA/AVHRR data. Adv. Space Res. 37 (4), 720–727.

    Google Scholar 

  • Slaymaker, O., 2001. The role of remote sensing in geomorphology and terrain analysis in the Canadian Cordillera. Int. J. Appl. Earth Obs. Geoinf. 3 (1), 7.

    Google Scholar 

  • Soil Survey Staff, 1951. Soil Survey Manual. Agricultural Research Administration, U.S. Dept. of Agriculture, Washington, D.C.

    Google Scholar 

  • Soil Survey Staff, 1998. Keys to Soil Taxonomy. 8th edition. Natural Resources Conservation Service, U. S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  • Soil Survey Staff. 1993. Soil Survey Manual 18, US Govt, Printing Office, Washington, DC.

    Google Scholar 

  • Soil Survey Staff, 2003. Keys to Soil Taxonomy Natural Resources Conservation Service United States Department of Agriculture. Ninth Edition, 2003.

    Google Scholar 

  • Srivastava, R. and Saxena, R.K., 2004. Technique of large-scale soil mapping basaltic terrain using satellite remote sensing data. International Journal of Remote Sensing 25(4).

    Google Scholar 

  • Stamatiadis, S.; Christofides, C.; Tsadilas, C.; Samaras, V.; Schepers, J. S. and Francis, D. (2005). Ground sensor soil reflectance as related to soilproperties and crop response in a cotton field. Precision Agriculture 6, 399–411.

    Google Scholar 

  • Stoner, E.R. and Horvath, E.H. 1971. The effect of cultural practices on multispectral response from surface soil. Proceedings of the 7th International Symposium on Remote Sensing of Environment, University of Michigan, Ann Arbor, pp. 2109–2113.

    Google Scholar 

  • Su, H., Kanemasu, E.T., Ransosm, M. and Yang, S.S.,1990. Separability of soils in a tall grass prairie using SPOT and DEM data. Remote Sensing of Environment. 33, 157–163.

    Google Scholar 

  • Sumfleth, K., Duttmann, R., 2008. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecol. Indic.8 (5), 485–501.

    Google Scholar 

  • Thompson, D.R., Henderson, K.E., Houstan, A.G. and Pitts, D.E., 1984. Variations in alluvial derived soils as measured by Landsat Thematic Mapper. Soil Science Society of America Journal 40:137–142.

    Google Scholar 

  • Tucker, C.J., Vanpraet, C.L., Sharman, M.J., van Ittersum, G., 1985. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens. Environ. 17(3), 233–249.

    Google Scholar 

  • U.S. Department of Agriculture, 1951. Soil Survey Manual, Agriculture. Hand book No.18. USDA. Soil Survey Staff, Washington, DC.

    Google Scholar 

  • USDA, Soil Conservation Service. 1981. National Soils Handbook. US Government Printing Office, Washington DC.

    Google Scholar 

  • Ustin, S.L., Gamon, J.A., 2010. Remote sensing of plant functional types. New Phytol. 186(4), 795–816.

    Google Scholar 

  • Vink A.P.A., 1963. Aerial photographs and Soil Sciences. Department of Natural Scinces, Division of Natural Resources, UNESCO.

    Google Scholar 

  • Vink, A.P.A., 1964. Aerial Photographs and Soil Sciences. Porc.of the Toulouse Conference on Aerial Surveys and Integrated Studies: pp 81–141.

    Google Scholar 

  • Wambeke, A van and T Forbes (eds). 1986. Guidelines for Using Soil Taxonomy in the Names of Soil Map Units. SMSS Technical Monograph No 10.

    Google Scholar 

  • Wan, Z., 2008. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products, Remote Sensing Environment, 112(2008):59–74.

    Google Scholar 

  • Wang, X., Xie, H., Guan, H., Zhou, X., 2007. Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. J. Hydrol. 340 (1–2), 12–24.

    Google Scholar 

  • Webster, R., 1994. The development of pedometrics. Geoderma 62, 1–15.

    Google Scholar 

  • Weismiller, R. A., I.D. Persinger & O.L. Montgomery, 1977. Soil inventory for digital analysis of satellite scanner and topographic data. Soil Science Society of America Journal 41:1166–1170.

    Google Scholar 

  • Wiegand, C.L., Anderson, G., Lingle, S. and Escobar, D. E., 1996. Soil salinity effects on crop growth and yield of- Illustration of an analysis and mapping methodology for sugarcane. Journal of Plant Physiology 148:418–424(1996).

    Google Scholar 

  • Wilson, J.B., 1999. Guilds, functional types and ecological groups. Oikos 86 (3), 507–522.

    Google Scholar 

  • Wright, G.G. and Birnie, R.V., 1986. Detection of surface soil variation using high resolution satellite data: Results from the UK SPOT-simulation investigation. International Journal of Remote Sensing. 7:757–766.

    Google Scholar 

  • Zhao, Y.-C., and X.-Z. Shi (2010). Spatial Prediction and Uncertainty Assessment of Soil Organic Carbon in Hebei Province, China, in Digital Soil Mapping, edited by J. Boettinger, D. Howell, A. Moore, A. Hartemink and S. Kienast-Brown, pp. 227–239, Springer Netherlands.

    Google Scholar 

  • Zinck, J.A. and Valenzuela, C.R., 1990. Soil geographic database: Structure and application. ITC journal1990–3: 270-294.

    Google Scholar 

URLs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shankar Dwivedi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Dwivedi, R.S. (2017). Soil Resources Mapping. In: Remote Sensing of Soils. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53740-4_7

Download citation

Publish with us

Policies and ethics