Skip to main content

Biofuels Production from Renewable Feedstocks

  • Chapter
  • First Online:
Quality Living Through Chemurgy and Green Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Predicted increases in greenhouse gas emissions, depleting fossil fuel supplies, global conflicts, and energy security are major factors driving the search for renewable energy supplies. Based on future energy demand projections, biofuels production is expected to increase. However, this increase represents a small fraction of this growing demand because the land area required to grow sufficient biofuels crops is unavailable. Hence, fulfilling the growing energy demand after attaining peak fossil fuel production will include using a combination of energy sources such as renewables, wind, geothermal, nuclear, hydroelectric, solar, and coal. Current and potential feedstocks include grains, grasses, root crops, oil seeds, algae, and lignocellulosics. Grains, sugar crops, and lignocellulosics are the main feedstocks used in full-scale first- and second-generation ethanol processes. While first-generation biodiesel is produced mainly from corn, soybeans, canola oil, rapeseed, palm oil, Jatropha, and coconut oil, second-generation fuels are produced from lignocellulosics. Third-generation technology employs several processes to produce a variety of biofuels from algae while fourth-generation technologies, a developing concept, is intended to employ genetically modified terrestrial or aquatic plants. In another concept, fourth-generation technologies can be configured with CO2 sequestration and storage. First-generation biobutanol is produced from corn or molasses and from sugar beet as well as sugarcane, while second-generation production processes utilize lignocellulosics such as corn stover, rice straw, corn fiber, switchgrass, alfalfa, reed canary grass, sugarcane bagasse, Miscanthus, waste paper, dry distillers grain with solubles (DDGS), and soy molasses. A variety of technologies, based on the enzyme systems, are currently under investigation for producing biohydrogen. Biohydrogen production routes are divided into biophotolysis (direct/indirect), dark fermentation, and photofermentation. Increasing global demand is expected to drive increasing bioethanol and biobutanol production using food and nonfood feedstocks. At the same time, researchers are developing technologies to produce biohydrogen and biodiesel. Biohydrogen and biodiesel production technologies are in their developmental stages; however, with innovation, these technologies are expected to mature into economical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pernick R, Wilder C, Belcher J (2014) Energy Trends 2014, Clean Edge reports, The Clean Market Authority

    Google Scholar 

  2. BP Energy Outlook 2035 (2014) BP, London, United Kingdom. http://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2015/bp-energy-outlook-2035-booklet.pdf

  3. World Energy Council (2013) World Energy Resources 2013 Survey. World Energy Council, Registered in England and Wales, No. 4184478, Regency House, London

    Google Scholar 

  4. Edwards JD (2000) Twenty first century energy decline of fossil fuels increase of renewable non-polluting energy sources. In: Part II conference, petroleum provinces of the 21st century, January 12th–15th, 2000, San Diego, CA

    Google Scholar 

  5. Orr L (2006) Changing the world’s energy systems. Stanford University Global and Energy Project (after John Edwards, American Association of Petroleum Geologists)

    Google Scholar 

  6. Haque SM, Bhat AH, Khan I (2015) Biomass: an ageless raw material for biofuels. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer, New York, p 446

    Google Scholar 

  7. vanVelthuizen H, Huddleston B, Fischer G, Salvatore M, Ataman E, Nachtergaele FO, Zanetti M, Bloise M (2006) Mapping biophysical factors that influence agricultural production and rural vulnerability, Environmental and Natural Resources, series 11. FAO and IIASA, Rome

    Google Scholar 

  8. Stöcker M, Tschentscher R (2015) Biomass to liquid biofuels via heterogeneous catalysis. In: Jacinto Sa (ed) Fuel production with heterogeneous catalysis. CRC Press, Taylor & Francis Group, Boca Raton, FL, p.219

    Google Scholar 

  9. Vegetable oil production data accessed from http://www.indexmundi.com/agriculture/?commodity=soybean-oil&graph=production

  10. Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 246(4):1–14

    Article  Google Scholar 

  11. Hays SG, Ducat DC (2015) Engineering cyanobacteria as photosynthetic feedstock factories. Photosynth Res 123:285–295

    Article  CAS  Google Scholar 

  12. Scaife MA, Nguyen GTDT, Rico J, Lambert D, Helliwell KE, Smith AG (2015) Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J 82:532–546

    Article  CAS  Google Scholar 

  13. Aro E-M (2016) From first generation biofuels to advanced solar biofuels. Ambio 45 (Suppl 1):24–31

    Article  CAS  Google Scholar 

  14. Henry RJ (2010) Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnol J 8:288–293

    Google Scholar 

  15. Ladanai S, Vinterbäck J (2009) Global potential of sustainable biomass for energy, SLU, Institutionen förenergio chteknik, Swedish University of Agricultural Sciences, Department of Energy and Technology, Uppsala, Finland, Report 013, ISSN 1654-9406

    Google Scholar 

  16. Gupta RB, Demirbas A (2010) Biomass availability in the world. In: Gasoline, diesel and ethanol biofuels from grasses and plants. Cambridge University Press, New York, Chap. 4, pp 56–72

    Book  Google Scholar 

  17. Haberl H, Erb KH, Krausmann F, Bondeau A, Lauk C, Müller C, Plutzar C, Steinberger JK (2011) Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass Bioenerg 35(12):4753–4769

    Article  Google Scholar 

  18. Slade R, Saunders R, Gross R, Bauen A (2011) Energy from biomass: the size of the global resource. Imperial College Centre for Energy Policy and Technology and UK Energy Research Centre, London

    Google Scholar 

  19. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  Google Scholar 

  20. Demirbas A (2000) Biomass resources for energy and chemical industry. Energy Edu Sci Technol 5:21–45

    CAS  Google Scholar 

  21. Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego, CA

    Google Scholar 

  22. Hall DO, Rosillo-Calle F, Williams RH, Woods J (1993) Biomass for energy: supply prospects. In: Johansson TB, Kelly H, Reddy AKN, Williams RH (eds) Renewable energy: sources for fuels and electricity. Island Press, Washington, DC, pp 593–651

    Google Scholar 

  23. OECD/FAO (2013) Agricultural outlook 2013, Chapter 3 Biofuels, OECD

    Google Scholar 

  24. United States Department of Agriculture (USDA) (2015) World Agricultural Production, Foreign Agricultural Service Circular Series WAP 12–15, December 2015

    Google Scholar 

  25. FAO (2013) Food Outlook, Biannual report global food markets. www.fao.org/3/a-i4136e.pdf

  26. Koo WW, Taylor RD (2013) Outlook of the U.S. and World Sugar Markets, 2012–2022. Agribusiness and Applied Economics Report No. 714 June 2013. Center for Agricultural Policy and Trade Studies, Department of Agribusiness and Applied Economics, North Dakota State University, Fargo, North Dakota 58108-6050

    Google Scholar 

  27. OECD, FAO (2015) Oilseeds and oilseed products, in OECD-FAO agricultural outlook 2015. OECD Publishing, Paris

    Book  Google Scholar 

  28. van den Born GJ, van Minnen JG, Olivier JGJ, Ros JPM (2014) Integrated analysis of global biomass flows in search of the sustainable potential for bioenergy production, PBL Netherlands Environmental Assessment Agency, PBL publication number 1509, p 8

    Google Scholar 

  29. Pippo WA, Luengo CA (2013) Sugarcane energy use: accounting of feedstock energy considering current agro-industrial trends and their feasibility. Int J Energy Environ Eng 4(1):10–13

    Article  Google Scholar 

  30. United States Environmental Protection Agency—www3.epa.gov

  31. United States Energy Information Administration—www.eia.gov

  32. Abbas C, Binder TP, Beery KE, Cecava MJ, Doane PH, Holzgraefe DP, Solheim LP (2011) Process for the production of animal feed and ethanol and novel animal feed. U.S. patent US 7998511 B2

    Google Scholar 

  33. Léder I (2004) Sorghum and millets. Grains and cereals, in cultivated plants, primarily as food sources. In: Fulek G (ed) Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO, vol 1. EOLSS Publishers, Paris, p 66 http://www.eolss.net

  34. Klass DL (2004) Biomass for renewable energy and fuels in Encyclopedia of Energy, Cutler CJ (Editor-in-Chief), Elsevier, San Diego, CA

    Google Scholar 

  35. Chandel AK, da Silva SS, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87(1):11–20

    Article  CAS  Google Scholar 

  36. United States Department of Agriculture (USDA) (2015) Agricultural projections to 2024. Office of the Chief Economist, World Agricultural Outlook Board, U.S. Department of Agriculture. Prepared by the Interagency Agricultural Projections Committee. Long-term Projections Report OCE-2015-1

    Google Scholar 

  37. European Commission (2015) From the sugar platform to biofuels and biochemical. Final report for the European Commission Directorate-General Energy No. ENER/C2/423-2012/SI2.673791

    Google Scholar 

  38. European Biogas Association. EBA’s Biomethane fact sheet. Renewable Energy House, Rue d’Arlon 63–65, www.european-biogas.eu

  39. EurObserv’ER (2014) Biogas Barometer accessed Feb. 10th, 2016 http://www.energies-renouvelables.org/observ-er/stat_baro/observ/baro224_Biogas_en.pdf

  40. Voegele E (2014) EurObserv’ER annual report highlights EU bioenergy sector, Biomass Magazine accessed on Feb. 10th, 2016 http://biomassmagazine.com/articles/10208/eurobserver-annual-report-highlights-eu-bioenergy-sector

  41. Böhme D, Dürrschmidt W, van Mark M (2011) General and fundamental aspects of renewable energy sources. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Division KI III 1

    Google Scholar 

  42. Cuèllar AD, Webber ME (2008) Cow power: the energy and emissions benefits of converting manure to biogas. Environ Res Lett 3:034002

    Article  Google Scholar 

  43. Frigon JC, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels, Bioprod Biorefin 4(4):447–458

    Article  CAS  Google Scholar 

  44. http://www.projetgaya.com/en/the-2nd-generation-biomethane-production-process

  45. http://www.statista.com/statistics/249609/sugar-beet-production-worldwide/

  46. Koizumi T (2015) Biofuels and food security: Biofuel impact on food security in Brazil, Asia and major producing countries. Springer, New York

    Google Scholar 

  47. Saskatchewan Agriculture and Food, Agriculture Development and Diversification Secretariat, Environment and Engineering Branch (1993) Establishing an ethanol production business. The Secretariat, Saskatchewan

    Google Scholar 

  48. Asadim M (2007) Beet-Sugar Handbook. Chapter 3, Sugarbeet processing. Wiley, New York, p 105

    Google Scholar 

  49. Shapouri H, Salassi M, Fairbanks JN (2006) The economic feasibility of ethanol production from sugar in the United States. United States Department of Agriculture report, Office of the Chief Economist, USDA report July 2006

    Google Scholar 

  50. Kuiper L, Ekmekci B, Hamelinck C, Hettinga W, Meyer S, Koop K (2007) Bio-ethanol from cassava. Ecofys Netherlands BV, NL-3503 RK Utrecht, The Netherlands, Project number: PBIONL062937

    Google Scholar 

  51. Höfer R (2015) Sugar- and starch-based biorefineries. In: Pandey A, Höfer R, Larroche C, Taherzadeh M, Nampoothiri KM (eds) Industrial biorefineries and white biotechnology. Elsevier, Waltham, MA

    Google Scholar 

  52. Cardona CA, Sanchez OJ, Gutierrez LF (2010) Process synthesis for fuel ethanol production. Chapter 3. Feedstock for ethanol production. CRC Press, Taylor and Francis, Boca Raton, p 45

    Google Scholar 

  53. Bonin CL, Heaton EA, Cogdill TJ, Moore KJ (2016) Management of sweet sorghum for biomass production. Sugar Tech 2:150–159

    Article  Google Scholar 

  54. Brown RC, Wright MM (2008) Capturing solar energy through biomass. In: Kreith F, Krumdieck S (eds) Principles of sustainable energy systems, 2nd ed. CRC Press, Taylor and Francis Group, Boca Raton, FL

    Google Scholar 

  55. Lee S, Shah YT (2013) Biofuels and bioenergy: processes and technologies, CRC Press, Taylor and Francis Group, Boca Raton, FL

    Google Scholar 

  56. Licht S (2014) Fermentation for biofuels and bio-based chemicals. In: Vogel HC, Todaro CM (eds) Fermentation and biochemical engineering handbook principles, process design, and equipment, 3rd edn. Elsevier, Waltham, MA

    Google Scholar 

  57. Zhao R, Wu X, Bean S, Wang D (2010) Ethanol from grain crops. In: Singh BP (ed) Industrial crops and uses. CAB International, Oxfordshire

    Google Scholar 

  58. https://www.eia.gov/todayinenergy/detail.cfm?id=21212

  59. Kelsall DR, Lyons TP (1999) Grain dry milling and cooking for alcohol production: designing for 23 % ethanol and maximum yield. Chapter 2. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook. 3rd ed. Nottingham University Press. Nottingham

    Google Scholar 

  60. Cheng J, Leu SY, Zhu J, Gleisner R (2015) High titer and yield ethanol production from undetoxified whole slurry of Douglas-fir forest residue using pH profiling in SPORL. Biotechnol Biofuels 8:22

    Article  Google Scholar 

  61. Overend RP, Wright LL (2008) Biomass energy in energy conversion. Taylor & Francis, Boca Raton, Chapter 3, pp 3–14

    Google Scholar 

  62. Anon (2010) Year one of the RTFO renewable fuels agency report on the renewable transport fuel obligation 2008/09. Printed in the UK for The Stationery Office Limited on behalf of the Controller of Her Majesty’s Stationery Office

    Google Scholar 

  63. http://www.tradingeconomics.com/brazil/gdp

  64. de Souza Dias MO, Filho RM, Mantelatto PE, Cavalett O, Rossell CEV, Bonomi A, Leal MRLV (2015) Sugarcane processing for ethanol and sugar in Brazil. Environ Dev 15:35–51

    Article  Google Scholar 

  65. Soccol CR, de Souza Vandenberghe LP, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP et al (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87(9):1206–1216

    Article  Google Scholar 

  66. Canilha L, Santos V, Rocha G, Almeida e Silva J, Giulietti M, Silva S et al (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38(9):1467–1475

    Article  CAS  Google Scholar 

  67. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  Google Scholar 

  68. Tumbala P, Thelen, KD, Adkins A, Dale B, Balan V, Gunawan C, Gao J (2016) Corn stover ethanol yield as affected by grain yield, Bt trait, and environment. Biomass Bioenerg 119–125

    Google Scholar 

  69. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, Golden, Colorado. Report # NREL/TP-510-32438

    Google Scholar 

  70. Talebina F (2015) Bioethanol from lignocellulosics wastes: current status. In: Karimi K (ed) Lignocellulose-based bioproducts. Springer, New York

    Google Scholar 

  71. Abramson M, Shoseyov O, Hirsch S, Shani Z (2013) Genetic modifications of plant cell walls to increase biomass and bioethanol production. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York

    Google Scholar 

  72. Lee W-C, Kuan W-C (2015) Miscanthus as cellulosic biomass for bioethanol production. Biotechnol J 10(6):840–854

    Article  CAS  Google Scholar 

  73. Ewanick S, Bura R (2011) The effect of biomass moisture content on bioethanol yields from steam pretreated switchgrass and sugarcane bagasse. Bioresourc Technol 102(3):2651–2658

    Article  CAS  Google Scholar 

  74. Angelini LG, Ceccarini L, o Di Nasso NN, Bonari e (2009) Comparison of Arundodonax L and Miscanthus × giganteus in a long-term field experiment in Central Italy. Biomass Bioenergy 33(4):635–643

    Article  Google Scholar 

  75. Lewandowski I, Clifton BJC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenerg 19:209–227

    Article  CAS  Google Scholar 

  76. Hayes DJM (2013) Biomass composition and its relevance to biorefining. In: Triantafyllidis KS, Lappas AA, Stocker M (eds) The role of catalysis for the sustainable production of bio-fuels and bio-chemicals. Elsevier, Amsterdam

    Google Scholar 

  77. Schmer MR, Vogel P, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Nat Acad Sci 105:464–469

    Article  CAS  Google Scholar 

  78. Lewis RS, Datar RP, Huhnke RL (2005) Biomass to ethanol. In: Lee S (ed) Encyclopedia of chemical processing, 8th edn. Marcel Dekker, New York, NY

    Google Scholar 

  79. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: Current findings. The Sci World J 1–13

    Google Scholar 

  80. Renewable Energy Association (2013) Battling for the barrel: 2013 ethanol industry outlook. Renewable Energy Association

    Google Scholar 

  81. https://dglassassociates.wordpress.com/2013/02/25/commercial-cellulosic-ethanol-projects-brazil-and-europe/

  82. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  Google Scholar 

  83. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  Google Scholar 

  84. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  CAS  Google Scholar 

  85. Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F et al (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  CAS  Google Scholar 

  86. Speigh JG (2014) The Fischer-Tropsch process in gasification of unconventional feedstocks. Gulf Professional Publishing, Wyman Street, Waltham, p 119

    Google Scholar 

  87. Urakawa A, Sá J (2015) CO2 to Fuels. In: Sá J (ed) Fuel production with heterogeneous catalysis. CRC Press, Taylor & Francis, Boca Raton, p 93

    Google Scholar 

  88. Lee H-J (2010) Optimization of Fischer–Tropsch plant. Doctor of Philosophy, Faculty of Engineering and Physical Sciences, University of Manchester, United Kingdom

    Google Scholar 

  89. Higman C, van der Burgt M (2008) Gasification. 2nd Edition, Gulf Professional Publishing (Imprint of Elsevier), Atlanta, GA

    Google Scholar 

  90. McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83(1):55–63

    Article  CAS  Google Scholar 

  91. Mirzaei AA, Vahid S, Feyz, M (2009) Fischer–Tropsch synthesis over iron manganese catalysts: effect of preparation and operating conditions on catalyst performance. Adv Phy Chem Article 12 p ID 151489. doi:10.1155/2009/151489

    Google Scholar 

  92. Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol 186:122–127

    Article  CAS  Google Scholar 

  93. Younesi H, Najafpour G, Mohamed AR (2005) Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem Eng J 27:110–119

    Article  CAS  Google Scholar 

  94. Runge W (2013) Technology entrepreneurship: a treatise on entrepreneurs and entrepreneurship for and in technology ventures, vol 1. KIT Scientific Publishing, Karlsruhe

    Google Scholar 

  95. Basu P (2010) Pyrolysis and torrefaction in biomass gasification and pyrolysis: practical design and theory. Elsevier, Waltham, MA

    Google Scholar 

  96. FAO (2008) The state of food and agriculture—biofuels: prospects, risks and opportunities. FAO, Rome

    Google Scholar 

  97. Issariyakul T, Dalai AK (2014) Biodiesel from vegetable oils (review). Renew Sustain Energy Rev 31:446–471

    Article  CAS  Google Scholar 

  98. Hoogendoorn A, van Kasteren H (2011) Transportation biofuels: novel pathways for the production of ethanol. Chapter 4 Enzymatic biodiesel, Royal Society of Chemistry, p 133

    Google Scholar 

  99. Al-Zuhair S, Fan WL, Lim SJ (2007) Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Proc Biochem 42:951–960

    Article  CAS  Google Scholar 

  100. Al-Zuhair S (2008) Enzymatic production of bio-diesel from waste cooking oil using lipase. Open Chem Eng J 2:84–88

    Article  CAS  Google Scholar 

  101. Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y (1999) Conversion of vegetable oil biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

    Article  CAS  Google Scholar 

  102. Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK (2016) A review of the enzymatic hydroesterification process for biodiesel production. Renew Sustain Energy Rev 61:245–257

    Article  CAS  Google Scholar 

  103. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  104. Rattray JBM (1988) Yeasts. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 555–697

    Google Scholar 

  105. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32(7):1336–1360

    Article  CAS  Google Scholar 

  106. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  Google Scholar 

  107. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  108. Um B-H, Kim Y-S (2009) Review: a chance for Korea to advance algal-biodiesel technology. J Ind Eng Chem 15:1–7

    Article  CAS  Google Scholar 

  109. Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresourc Technol 101:5892–5896

    Article  CAS  Google Scholar 

  110. Han SF, Jin WB, Tu RJ, Wu WM (2015) Biofuel production from microalgae as feedstock: current status and potential. Crit Rev Biotechnol 35(2):255–268

    Article  CAS  Google Scholar 

  111. Dürre P (2008) Fermentative butanol production: Bulk chemical and biofuel. Ann NY Acad Sci 1125:353–362

    Article  Google Scholar 

  112. Ezeji TC, Qureshi N, Blaschek HP (2005) Industrially relevant fermentations. In: Dürre P (ed) Handbook on clostridia. CRC Press, Boca Raton, pp 797–812

    Chapter  Google Scholar 

  113. Dürre P, Bahl H, Gottschalk G (1988) Membrane processes and product formation in anaerobes. In: Erickson LE, Fung DY-C (eds) Handbook on anaerobic fermentations. Marcel Dekker, New York, pp 187–206

    Google Scholar 

  114. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  Google Scholar 

  115. Dolejš I, Krasňan V, Stloukal R, Rosenberg M, Rebroš M (2014) Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. Bioresour Technol 169:723–730

    Article  Google Scholar 

  116. Jones DT, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17:223–232

    Article  CAS  Google Scholar 

  117. Keis S, Shaheen R, Jones DT (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095–2103

    Article  CAS  Google Scholar 

  118. Qureshi N, Blaschek HP (2001) Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 27(5):287–291

    Article  CAS  Google Scholar 

  119. Shamsudin S, MohdSahaid HK, Wan Mohtar WY (2006) Production of acetone, butanol and ethanol (ABE) by C. saccharoperbutylacetonicum N1-4 with different immobilization systems. Pakistan. J Biol Sci 9(10):1923–1928

    CAS  Google Scholar 

  120. Cheng HH, Whang LM, Chan KC, Chung MC, Wu SH, Liu CP, Tien SY, Chen SY, Chang JS, Lee WJ (2015) Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol 184:379–385

    Article  CAS  Google Scholar 

  121. Qureshi N, Liu S, Ezeji TC (2012) Cellulosic butanol production from agricultural biomass and residues: recent advances in technology. Adv Biofuels Bioprod 247–265

    Google Scholar 

  122. Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Article  CAS  Google Scholar 

  123. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    Article  CAS  Google Scholar 

  124. Benemann JR (1996) Hydrogen biotechnology: Progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  Google Scholar 

  125. Nath K, Das D (2005) Hydrogen production by Rhodobactersphaeroides strain O.U.0011 using spent media of Enterobacter cloacae strain DM1. Appl Microbiol Biotechnol 68:533–541

    Article  CAS  Google Scholar 

  126. Philpott J (2010) Bio-hydrogen production from glucose degradation using a mixed anaerobic culture in the presence of natural and synthetic inhibitors. MASc. Thesis, University of Windsor, Windsor, Ontario, Canada

    Google Scholar 

  127. Sparling R, Risbey D, Poggi-Varaldo HM (1997) Hydrogen production from inhibited anaerobic composters. Int J Hydrogen Energy 22:563–566

    Article  CAS  Google Scholar 

  128. Kumar N, Ghosh A, Das D (2001) Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnol Lett 23(7):537–541

    Article  CAS  Google Scholar 

  129. Shanmugam SR, Chaganti SR, Lalman JA, Heath DD (2014) Effect of inhibitors on hydrogen consumption and microbial population dynamics in mixed anaerobic cultures. Int J Hydrogen Energy 39(1,2):249–257

    Article  CAS  Google Scholar 

  130. Veeravalli S, Chaganti S, Lalman J, Heath D (2014) Optimizing hydrogen production from a switchgrass steam exploded liquor using a mixed anaerobic culture in an upflow anaerobic sludge blanket reactor. Inter J Hydrogen Energy 39(7):3160–3175

    Article  CAS  Google Scholar 

  131. Lai Z, Zhu M, Yang X, Wang J, Li S (2014) Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture. Biotechnol Biofuels 7:119

    Google Scholar 

  132. Chen R, Wang YZ, Liao Q, Zhu X, Xu TF (2013) Hydrolysates of lignocellulosic materials for biohydrogen production. BMB Rep 46(5):244–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the University of Windsor and Aberystwyth University. Funding for Dr. Ravella was also provided by the Welsh European Funding Office (WEFO) and the UK Biotechnology and Biological Sciences Research Council (BBSRC) (BBS/E/W/10963A01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerald A. Lalman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Lalman, J.A., Shewa, W.A., Gallagher, J., Ravella, S. (2016). Biofuels Production from Renewable Feedstocks. In: C.K. Lau, P. (eds) Quality Living Through Chemurgy and Green Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53704-6_8

Download citation

Publish with us

Policies and ethics