Skip to main content

Ex Vivo Enzymatic Conversion of Non-food Cellulose Biomass to Starch

  • Chapter
  • First Online:
Quality Living Through Chemurgy and Green Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1017 Accesses

Abstract

To meet the world’s rising future food/feed needs, outputs of modern agriculture must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. In this chapter, we propose an ex vivo synthetic enzymatic pathway to enable the transformation of non-food cellulose to amylose, a high-value linear starch, meanwhile glucose released by enzymatic hydrolysis of cellulose is used to produce ethanol and/or single-cell protein by yeast fermentation in the same vessel. The strategy of simultaneous enzymatic biotransformation and microbial fermentation is the basis of new biomass biorefineries that would address the food, fuels, and environment trilemma by coproducing food/feed, biomaterials, and biofuels from the most abundant renewable bioresource—non-food lignocellulosic biomass. Toward this development, new directions pertaining to pretreatment of lignocellulosic biomass and advanced enzyme engineering are discussed to increase the efficiency of saccharification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  Google Scholar 

  2. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  3. The World Economic Forum Water Initiative (2011) Water security: the water-food-energy-climate nexus. Island Press, Washington

    Book  Google Scholar 

  4. Bruce TJ (2012) GM as a route for delivery of sustainable crop protection. J Exp Bot 63:537–541

    Article  CAS  Google Scholar 

  5. Bagla P (2012) Negative report on GM crops shakes government’s food agenda. Science 337:789

    Article  CAS  Google Scholar 

  6. Chen H-G, Zhang YHP (2015) New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security. Renew Sustain Energy Rev 47:117–132

    Article  CAS  Google Scholar 

  7. Varshney VK, Naithani S (2011) Chemical functionalization of cellulose derived from nonconventional sources. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 43–60

    Chapter  Google Scholar 

  8. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  Google Scholar 

  9. Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang Y-HP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380

    Article  Google Scholar 

  10. Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J, Mousa SA, Linhardt RJ, Liu J (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498–501

    Article  CAS  Google Scholar 

  11. Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277

    Article  CAS  Google Scholar 

  12. Swartz JR (2011) Transforming biochemical engineering with cell-free biology. AIChE J 58:5–13

    Article  Google Scholar 

  13. Zhang Y-HP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE 2:e456

    Article  Google Scholar 

  14. Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B, Reiße S, Philipp A, Haack M, Rühmann B, Kettling U et al (2012) Cell-free metabolic engineering—production of chemicals via minimized reaction cascades. ChemSusChem 5:2165–2172

    Article  CAS  Google Scholar 

  15. Zhang Y-HP, Sun J-B, Zhong J-J (2010) Biofuel production by in vitro synthetic pathway transformation. Curr Opin Biotechnol 21:663–669

    Article  CAS  Google Scholar 

  16. You C, Chen H, Myung S, Sathitsuksanoh N, Ma H, Zhang X-Z, Li J, Zhang Y-HP (2013) Enzymatic transformation of nonfood biomass to starch. Proc Natl Acad Sci USA 110:7182–7187

    Article  CAS  Google Scholar 

  17. De Winter K, Cerdobbel A, Soetaert W, Desmet T (2011) Operational stability of immobilized sucrose phosphorylase: continuous production of α-glucose-1-phosphate at elevated temperatures. Proc Biochem 46:2074–2078

    Article  Google Scholar 

  18. Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86

    Article  CAS  Google Scholar 

  19. Zhang YHP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644–648

    Article  CAS  Google Scholar 

  20. Rollin JA, Zhu Z, Sathisuksanoh N, Zhang Y-HP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  CAS  Google Scholar 

  21. Sheppard AW, Gillespie I, Hirsch M, Begley C (2011) Biosecurity and sustainability within the growing global bioeconomy. Curr Opin Environ Sustain 3:4–10

    Article  Google Scholar 

  22. French CE (2009) Synthetic biology and biomass conversion: a match made in heaven? J Roy Soc Interface 6:S547–S558

    Article  CAS  Google Scholar 

  23. Casillas CE, Kammen DM (2010) The energy-poverty-climate nexus. Science 330:1181–1182

    Article  CAS  Google Scholar 

  24. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  25. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93

    CAS  Google Scholar 

  26. Sathitsuksanoh N, George A, Zhang YHP (2013) New lignocellulose pretreatments using cellulose solvents: a review. J Chem Technol Biotechnol 88:169–180

    Article  CAS  Google Scholar 

  27. Yanase M, Takata H, Fujii K, Takaha T, Kuriki T (2005) Cumulative effect of amino acid replacements results in enhanced thermostability of potato type L alpha-glucan phosphorylase. Appl Environ Microbiol 71:5433–5439

    Article  CAS  Google Scholar 

  28. Bae J, Kuroda K, Ueda M (2015) Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Appl Environ Microb 81:59–66

    Google Scholar 

  29. Tsai S, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6087–6093

    Article  CAS  Google Scholar 

  30. Wen F, Sun J, Zhao H (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260

    Article  CAS  Google Scholar 

  31. Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  Google Scholar 

  32. Nakatani Y, Yamada R, Ogino C, Kondo A (2013) Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Fact 12:66

    Article  CAS  Google Scholar 

  33. Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J 5:449–455

    Article  CAS  Google Scholar 

  34. You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang Y-HP (2012) Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol 78:1437–1444

    Article  CAS  Google Scholar 

  35. J-i Kadokawa (2011) Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev 111:4308–4345

    Article  Google Scholar 

  36. J-i Kadokawa (2012) Preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. Polymers 4:116–133

    Article  Google Scholar 

  37. van Soest JJG, Vliegenthart JFG (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol 15:208–213

    Article  Google Scholar 

  38. Frische R, Wollmann K, Gross-Lannert R, Schneider J, Best B (1994) Special amyloses and their use for producing biodegradable plastics. US Patent 5374304

    Google Scholar 

  39. Maki KC, Pelkman CL, Finocchiaro ET, Kelley KM, Lawless AL, Schild AL, Rains TM (2012) Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr 142:717–723

    Article  CAS  Google Scholar 

  40. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    Article  CAS  Google Scholar 

  41. Miao M, Jiang B, Cui SW, Zhang T, Jin Z (2015) Slowly digestible starch—a review. Crit Rev Food Sci Nutr 55:1642–1657

    Article  CAS  Google Scholar 

  42. Gilbert R, Wu A, Sullivan M, Sumarriva G, Ersch N, Hasjim J (2013) Improving human health through understanding the complex structure of glucose polymers. Anal Bioanal Chem 405:8969–8980

    Article  CAS  Google Scholar 

  43. Rollin JA, Martin del Campo J, Myung S, Sun F, You C, Bakovic A, Castro R, Chandrayan SK, Wu C-H, Adams MWW et al (2015) High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Natl Acad Sci 112:4964–4969

    Article  CAS  Google Scholar 

  44. Ye X, Wang Y, Hopkins RC, Adams MWW, Evans BR, Mielenz JR, Zhang Y-HP (2009) Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2:149–152

    Article  CAS  Google Scholar 

  45. Peat S, Bourne EJ, Barker SA (1948) Enzymic conversion of amylose into amylopectin. Nature 161:127

    Article  CAS  Google Scholar 

  46. Caschera F, Noireaux V (2014) Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie 99:162–168

    Article  CAS  Google Scholar 

  47. Wang Y, Zhang Y-HP (2009) Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol 9:58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun You or Y. H. Percival Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

You, C., Zhang, Y.H.P. (2016). Ex Vivo Enzymatic Conversion of Non-food Cellulose Biomass to Starch. In: C.K. Lau, P. (eds) Quality Living Through Chemurgy and Green Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53704-6_6

Download citation

Publish with us

Policies and ethics