Skip to main content

Green Processes for Lignin Conversion

  • Chapter
  • First Online:
  • 1062 Accesses

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Lignin is a complex heterogeneous aromatic polymer consisting of up to 30 % of plant material. Its aromatic structure suggests that it is a possible renewable source for aromatic chemicals. However, the natural complexity and high stability of lignin makes its depolymerization a highly challenging task. Many efforts have been directed toward a better understanding of the structure and composition of lignin in order to design more efficient and greener deconstruction paths. This chapter aims at providing an overview of key advances in the field of lignin depolymerization, with special emphasis on chemical catalysis, ionic liquids, and biocatalysis. The various technologies are discussed and critically evaluated in terms of potential for further industrial implementation. Research gaps that still need to be addressed and the most promising approaches are highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Holladay J, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass. Vol. II: results of screening for potential candidates from biorefinery lignin; Report PNNL-16983. U.S. Department of Commerce: Springfield, VA, pp 1–79

    Google Scholar 

  2. Lora J (2008) Industrial commercial lignins: Sources, properties and application. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 225–241

    Chapter  Google Scholar 

  3. Gandini A, Belgacem MN (2008) Lignins as components of macromolecular materials. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 243–271

    Chapter  Google Scholar 

  4. Doherty WOS, Mousavioun P, Fellows CW (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33:259–276

    Article  CAS  Google Scholar 

  5. Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Educ 74:1055–1059

    Article  CAS  Google Scholar 

  6. Borregaard http://www.borregaard.com/Business-Areas/Other-Businesses/Borregaard-Ingredients/ (14 Dec 2015)

  7. Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43:7485–7500

    Article  CAS  Google Scholar 

  8. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Article  CAS  Google Scholar 

  9. Chatel G, Rogers RD (2014) Review: oxidation of lignin using ionic liquids-an innovative strategy to produce renewable chemicals. ACS Sustain Chem Eng 2:322–339

    Article  CAS  Google Scholar 

  10. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624

    Article  CAS  Google Scholar 

  11. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  12. Rodrigues Pinto PC, da Silva EAB, Rodrigues AE (2011) Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind Eng Chem Res 50:741–748

    Article  CAS  Google Scholar 

  13. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod 20:131–141

    Article  CAS  Google Scholar 

  14. Capanema EA, Balakshin MY, Kadla JF (2005) Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agric Food Chem 53:9639–9649

    Article  CAS  Google Scholar 

  15. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28:237–259

    Article  CAS  Google Scholar 

  16. Zhang AP, Lu FC, Sun RC, Ralph J (2009) Ferulate-coniferyl alcohol cross-coupled products formed by radical coupling reactions. Planta 229:1099–1108

    Article  CAS  Google Scholar 

  17. Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod 41:356–364

    Article  CAS  Google Scholar 

  18. Crestini C, Argyropoulos DS (1997) Structural analysis of wheat straw lignin by quantitative P-31 and 2D NMR spectroscopy. The occurrence of ester bonds and alpha-O-4 substructures. J Agric Food Chem 45:1212–1219

    Article  CAS  Google Scholar 

  19. Scalbert A, Monties B, Lallemand J-Y, Guittet E, Rolando C (1985) Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24:1359–1362

    Article  CAS  Google Scholar 

  20. Ralph J, Marita J, Ralph S, Hatfield RD, Lu F, Ede RM, Peng J, Quideau S, Helm R, Grabber J, Kim H, Jimenez-Monteon G, Zhang Y, Jung H-JG, Landucci L, MacKay J, Sederoff R, Chapple C, Boudet A (1999) Solution-state NMR of lignins. In: Argyropoulos DS (ed) Advances in lignocellulosics characterization. Tappi Press, Atlanta, pp 55–108

    Google Scholar 

  21. Pu Y, Cao S, Ragauskas AJ (2011) Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci 4:3154–3166

    Article  CAS  Google Scholar 

  22. Argyropoulos DS (1994) Quantitative phosphorus-31 NMR analysis of lignins, a new tool for the lignin chemist. J Wood Chem Technol 14:45–63

    Article  CAS  Google Scholar 

  23. Cateto CA, Barreiro MF, Rodrigues AE, Brochier-Salon MC, Thielemans W, Belgacem MN (2008) Lignins as macromonomers for polyurethane synthesis: a comparative study on hydroxyl group determination. J Appl Polym Sci 109:3008–3017

    Article  CAS  Google Scholar 

  24. Monteil-Rivera F, Paquet L (2015) Solvent-free catalyst-free microwave-assisted acylation of lignin. Ind Crop Prod 65:446–453

    Article  CAS  Google Scholar 

  25. Yang Q, Wu SB, Lou R, Lv GJ (2011) Structural characterization of lignin from wheat straw. Wood Sci Technol 45:419–431

    Article  CAS  Google Scholar 

  26. Hu G, Cateto C, Pu Y, Samuel R, Ragauskas AJ (2012) Structural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy Fuels 26:740–745

    Article  CAS  Google Scholar 

  27. Hattalli S, Benaboura A, Ham-Pichavant F, Nourmamode A, Castellan A (2002) Adding value to Alfa grass (Stipa tenacissima L.) soda lignin as phenolic resins. 1. Lignin characterization. Polym Degrad Stab 75:259–264

    Article  Google Scholar 

  28. Ahvazi B, Wojciechowicz O, Ton-That T-M, Hawari J (2011) Preparation of lignopolyols from wheat straw soda lignin. J Agric Food Chem 59:10505–10516

    Article  CAS  Google Scholar 

  29. Moghaddam L, Zhang Z, Wellard RM, Bartley JP, Hara IMO, Doherty WOS (2014) Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass Bioenergy 70:498–512

    Article  CAS  Google Scholar 

  30. Fengel D, Wegener G (1984) Chemical composition and analysis of wood. In: Fengel D, Wegener G (eds) Wood chemistry ultrastructure reactions. Walter de Gruyter, Berlin, pp 26–65

    Google Scholar 

  31. Jae J, Tompsett GA, Lin YC, Carlson TR, Shen J, Zhang T, Yang B, Wyman CE, Conner WC, Huber GW (2010) Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 3:358–365

    Google Scholar 

  32. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41

    CAS  Google Scholar 

  33. Wang K, Kim KH, Brown RC (2014) Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem 16:727–735

    Article  CAS  Google Scholar 

  34. Tarabanko VE, Petukhov DV, Selyutin GE (2004) New mechanism for the catalytic oxidation of lignin to vanillin. Kinet Catal 45:569–577

    Article  CAS  Google Scholar 

  35. Wong Z, Chen K, Li J (2010) Formation of vanillin and syringaldehyde in an oxygen delignification process. Bioresoure 5:1509–1516

    CAS  Google Scholar 

  36. Araújo JDP, Grande CA, Rodrigues AE (2010) Vanillin production from lignin oxidation in a batch reactor. Chem Eng Res Des 88:1024–1032

    Article  CAS  Google Scholar 

  37. Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem Eur J 17:5939–5948

    Article  CAS  Google Scholar 

  38. Beauchet R, Monteil-Rivera F, Lavoie JM (2012) Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour Technol 121:328–334

    Article  CAS  Google Scholar 

  39. Gasson JR, Forchheim D, Sutter T, Hornung U, Kruse A, Barth T (2012) Modeling the lignin degradation kinetics in an ethanol/formic acid solvolysis approach. Part 1. Kinetic model development. Ind Eng Chem Res 51:10595–10606

    Article  CAS  Google Scholar 

  40. Forchheim D, Gasson JR, Hornung U, Kruse A, Barth T (2012) Modeling the lignin degradation kinetics in an ethanol/formic acid solvolysis approach. Part 2. Validation and transfer to variable conditions. Ind Eng Chem Res 51:15053–15063

    Article  CAS  Google Scholar 

  41. Toledano A, Serrano L, Labidi J (2012) Organosolv lignin depolymerisation with different base catalysts. J Chem Technol Biotechnol 87:1593–1599

    Article  CAS  Google Scholar 

  42. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277–299

    Article  CAS  Google Scholar 

  43. Zakzeski J, Jongerius AL, Bruijnincx PCA, Weckhuysen BM (2012) Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. ChemSusChem 5:1602–1609

    Article  CAS  Google Scholar 

  44. Bozell J (2014) Approaches to the selective catalytic conversion of lignin: a grand challenge for biorefinery development. In: Nicholas KM (ed) Selective catalysis for renewable feedstocks and chemicals. Springer, Berlin, pp 229–255

    Google Scholar 

  45. Harris EE, D’Ianni J, Adkins H (1938) Reaction of hardwood lignin with hydrogen. J Am Chem Soc 60:1467–1470

    Article  CAS  Google Scholar 

  46. Kashima K, Maeda Y, Oshima M (1964) Method for liquefying lignin. Canadian Patent 700210

    Google Scholar 

  47. Engel DJ, Steigleder KZ (1987) Hydrocracking process for liquefaction of lignin. U.S. Patent 4,647,704

    Google Scholar 

  48. Urban P, Engel DJ (1988) Process for liquefaction of lignin U.S. Patent 4,731,491

    Google Scholar 

  49. Ratcliff MA, Johnson DK, Posey FL, Chum HL (1988) Hydrodeoxygenation of lignins and model compounds—scientific note. Appl Biochem Biotechnol 17:151–160

    Article  CAS  Google Scholar 

  50. Meier D, Berns J, Faix O, Balfanz U, Baldauf W (1994) Hydrocracking of organocell lignin for phenol production. Biomass Bioenergy 7:99–105

    Article  CAS  Google Scholar 

  51. Meier D, Ante R, Faix O (1992) Catalytic hydropyrolysis of lignin: influence of reaction conditions on the formation and composition of liquid products. Bioresour Technol 40:171–177

    Article  CAS  Google Scholar 

  52. Oasmaa A, Alen R, Meier D (1993) Catalytic hydrotreatment of some technical lignins. Bioresour Technol 45:189–194

    Article  CAS  Google Scholar 

  53. Oasmaa A, Johansson A (1993) Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst. Energy Fuels 7:426–429

    Article  CAS  Google Scholar 

  54. Torr KM, van de Pas DJ, Cazeils E, Suckling ID (2011) Mild hydrogenolysis of in-situ and isolated Pinus radiate lignins. Bioresour Technol 102:7608–7611

    Article  CAS  Google Scholar 

  55. Horácek J, Homola F, Kubicková I, Kubicka D (2012) Lignin to liquids over sulfide catalysts. Catal Today 179:191–198

    Article  CAS  Google Scholar 

  56. Song Q, Wang F, Xu J (2012) Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem Commun 48:7019–7021

    Article  CAS  Google Scholar 

  57. Zhang JG, Asakura H, van Rijn J, Yang J, Duchesne P, Zhang B, Chen X, Zhang P, Saeys M, Yan N (2014) Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem 16:2432–2437

    Article  CAS  Google Scholar 

  58. Zhang JG, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal 4:1574–1583

    Article  CAS  Google Scholar 

  59. Ma XL, Tian Y, Hao WY, Ma R, Li YD (2014) Production of phenols from catalytic conversion of lignin over a tungsten phosphide catalyst. Appl Catal A 481:64–70

    Article  CAS  Google Scholar 

  60. Xu W, Miller SJ, Agrawal PK, Jones CW (2012) Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. ChemSusChem 5:667–675

    Article  CAS  Google Scholar 

  61. Barta K, Warner GR, Beach ES, Anastas PT (2014) Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides. Green Chem 16:191–196

    Article  CAS  Google Scholar 

  62. Toledano A, Serrano L, Balu AM, Luque R, Pineda A, Labidi J (2013) Fractionation of organosolv lignin from olive tree clippings and its valorization to simple phenolic compounds. ChemSusChem 6:529–536

    Article  CAS  Google Scholar 

  63. Toledano A, Serrano L, Pineda A, Romero AA, Luque R, Labidi J (2014) Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: catalyst screening. Appl Catal B Environ 145:43–55

    Article  CAS  Google Scholar 

  64. Song Q, Wang F, Cai J, Wang Y, Zhang J, Yua W, Xu J (2013) Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ Sci 6:994–1007

    Article  CAS  Google Scholar 

  65. Parsell T, Yohe S, Degenstein J, Jarrell T, Klein I, Gencer E, Hewetson B, Hurt M, Kim JI, ChoudhariH Saha B, Meilan R, Mosier N, Ribeiro F, Delgass WN, Chapple C, KenttamaaHI Agrawal R, Abu-Omar MM (2015) A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem 17:1492–1499

    Article  CAS  Google Scholar 

  66. Vuori A, Bredenberg JB-S (1988) Liquefaction of Kraft lignin: 1. Primary reactions under mild thermolysis conditions. Holzforshung 42:155–161

    Article  CAS  Google Scholar 

  67. Kleinert M, Barth T (2008) Phenols from lignin. Chem Eng Technol 31:736–745

    Article  CAS  Google Scholar 

  68. Kleinert M, Barth T (2008) Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuels 22:1371–1379

    Article  CAS  Google Scholar 

  69. Wang X, Rinaldi R (2013) A route for lignin and bio-oil conversion: dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew Chem Int Ed 52:11499–11503

    Article  CAS  Google Scholar 

  70. Jongerius AL, Bruijnincx PCA, Weckhuysen BM (2013) Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin. Green Chem 15:3049–3056

    Article  CAS  Google Scholar 

  71. Yan N, Zhao C, Dyson PJ, Wang C, L-t Liu, Kou Y (2008) Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem 1:626–629

    Article  CAS  Google Scholar 

  72. Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn S-K, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8:1748–1763

    Article  CAS  Google Scholar 

  73. Crestini C, Pro P, Neri V, Saladino R (2005) Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds. Bioorg Med Chem 13:2569–2578

    Article  CAS  Google Scholar 

  74. Voitl T, von Rohr PR (2008) Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. ChemSusChem 1:763–769

    Article  CAS  Google Scholar 

  75. Voitl T, von Rohr PR (2010) Demonstration of a process for the conversion of Kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Ind Eng Chem Res 49:520–525

    Article  CAS  Google Scholar 

  76. Xiang Q, Lee YY (2001) Production of oxychemicals from precipitated hardwood lignin. Appl Biochem Biotechnol 91–93:71–80

    Article  Google Scholar 

  77. Wu G, Heitz M (1995) Catalytic mechanism of Cu2+ and Fe3+ in alkaline O2 oxidation of lignin. J Wood Chem Technol 15:189–202

    Article  CAS  Google Scholar 

  78. Bjørsvik H-R, Minisci F (1999) Fine chemicals from lignosulfonates. 1. Synthesis of vanillin by oxidation of lignosulfonates. Org Proc Res Dev 3:330–340

    Article  CAS  Google Scholar 

  79. Azarpira A, Ralph J, Lu FC (2014) Catalytic alkaline oxidation of lignin and its model compounds: a pathway to aromatic biochemicals. BioEnergy Res 7:78–86

    Article  CAS  Google Scholar 

  80. Villar JC, Caperos A, Garcia-Ochoa F (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 35:245–255

    Article  CAS  Google Scholar 

  81. Sales FG, Maranhão LCA, Lima Filho NM, Abreu CAM (2007) Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chem Eng Sci 62:5386–5391

    Article  CAS  Google Scholar 

  82. Deng HB, Lin L, Sun Y, Pang CS, Zhuang JP, Ouyang PK, Li ZJ, Liu SJ (2008) Perovskite-type oxide LaMnO3: an efficient and recyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromatic aldehydes. Catal Lett 126:106–111

    Article  CAS  Google Scholar 

  83. Zhou XF (2014) Selective oxidation of Kraft lignin over zeolite-encapsulated Co(II) [H4]salen and [H2]salen complexes. J Appl Polym Sci 131:40809(1-9)

    Article  CAS  Google Scholar 

  84. Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS (2013) Chemoselective metal-free aerobic oxidation in lignin. J Am Chem Soc 135:6415–6418

    Article  CAS  Google Scholar 

  85. Rahimi A, Ulbrich A, Coon JJ, Stahl SS (2014) Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515:249–252

    Article  CAS  Google Scholar 

  86. Borges da Silva EA, Zabkova M, Araújo JD, Cateto CA, Belgacem MF, Barreiro MN, Rodrigues AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des 87:1276–1292

    Article  CAS  Google Scholar 

  87. Wong JT (2012) Technological, commercial, organizational, and social uncertainties of a novel process for vanillin production from lignin. MBA Project, Simon Fraser University

    Google Scholar 

  88. Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4:35–46

    Article  CAS  Google Scholar 

  89. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  90. Lathasree S, Nageswara R, Sivasankar B, Sadasivam V, Rengaraj K (2004) Heterogeneous photocatalytic mineralization of phenols in aqueous solutions. J Mol Catal A Chem 223:101–105

    Article  CAS  Google Scholar 

  91. Kobayakawa K, Sato Y, Nakamura S, Fujishima A (1989) Photodecomposition of kraft lignin catalyzed by TiO2. Bull Chem Soc Jpn 62:3433–3436

    Article  CAS  Google Scholar 

  92. Tanaka K, Calanag CR, Hisanaga T (1999) Photocatalyzed degradation of lignin on TiO2. J Mol Catal A Chem 138:287–294

    Article  CAS  Google Scholar 

  93. Ksibi M, Ben Amor S, Cherif S, Elaloui E, Houas A, Elaloui M (2003) Photodegradation of lignin from black liquor using a UV/TiO2 system. J Photochem Photobiol A 154:211–218

    Article  CAS  Google Scholar 

  94. Yuan RS, Guan RB, Liu P, Zheng JT (2007) Photocatalytic treatment of wastewater from paper mill by TiO2 loaded on activated carbon fibers. Colloids Surf A 293:80–86

    Article  CAS  Google Scholar 

  95. Ma YS, Chang CN, Chiang YP, Sung HF, Chao AC (2008) Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst. Chemosphere 71:998–1004

    Article  CAS  Google Scholar 

  96. Ugurlu M, Karaoglu MH (2009) Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as photocatalyst. Environ Sci Pollut Res 16:265–273

    Article  CAS  Google Scholar 

  97. Ugurlu M, Karaoglu MH (2011) TiO2 supported on sepiolite: preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater. Chem Eng J 166:859–867

    Article  CAS  Google Scholar 

  98. Ugurlu M, Karaoglu MH, Vaizogullar AI (2013) Decolourization and removal of phenol compounds from olive mill wastewater byO2/UV/NaBO2H2O2-SH2O. Fresenius Environ Bull 22:752–763

    CAS  Google Scholar 

  99. Portjanskaja E, Stepanova K, Klauson D, Preis S (2009) The influence of titanium dioxide modifications on photocatalytic oxidation of lignin and humic acids. Catal Today 144:26–30

    Article  CAS  Google Scholar 

  100. Portjanskaja E, Preis S (2007) Aqueous photocatalytic oxidation of lignin: the influence of mineral admixtures. Int J Photoenergy 76730:1–7

    Article  CAS  Google Scholar 

  101. Rangel R, Mercado GJL, Bartolo-Perez P, Garcia R (2012) Nanostructured-[CeO2, La2O3, C]/TiO2catalysts for lignin photodegradation. Sci Adv Mater 4:573–578

    Article  CAS  Google Scholar 

  102. Kansal SK, Singh M, Sud D (2008) Studies on TiO2/ZnO photocatalysed degradation of lignin. J Hazard Mater 153:412–417

    Article  CAS  Google Scholar 

  103. Kamwilaisak K, Wright PC (2012) Investigating laccase and titanium dioxide for lignin degradation. Energy Fuels 26:2400–2406

    Article  CAS  Google Scholar 

  104. Tonucci L, Coccia F, Bressan M, Alessandro N (2012) Mild photocatalysed and catalysed green oxidation of lignin: A useful pathway to low-molecular-weight derivatives. Waste Biomass Valorization 3:165–174

    Article  CAS  Google Scholar 

  105. Bailey A, Brooks HM (1946) Electrolytic oxidation of lignin. J Am Chem Soc 68:445–446

    Article  CAS  Google Scholar 

  106. Moodley B, Mulholland DA, Brookes HC (2011) The electrooxidation of lignin in Sappi Saiccor dissolving pulp mill effluent. Water SA 37:33–40

    CAS  Google Scholar 

  107. Tolba R, Tian M, Wen J, Jiang Z-H, Chen A (2010) Electrochemical oxidation of lignin at IrO 2-based oxide electrodes. J Electroanal Chem 649:9–15

    Article  CAS  Google Scholar 

  108. Shao D, Liang JD, Cui XM, Xu H, Yan W (2014) Electrochemical oxidation of lignin by two typical electrodes: Ti/Sb-SnO2 and Ti/PbO2. Chem Eng J 244:288–295

    Article  CAS  Google Scholar 

  109. Zhu HB, Chen YM, Qin TF, Wang L, Tang Y, SunYZ Wan PY (2014) Lignin depolymerization via an integrated approach of anode oxidation and electro-generated H2O2 oxidation. RSC Adv 4:6232–6238

    Article  CAS  Google Scholar 

  110. Constant S, Robitzer M, Quignard F, Di Renzo F (2012) Vanillin oligomerization as a model of side reactions in lignin fragmentation. Catal Today 189:123–128

    Article  CAS  Google Scholar 

  111. Parpot P, Bettencourt AP, Carvalho AM, Belgsir EM (2000) Biomass conversion: attempted electrooxidation of lignin for vanillin production. J Appl Electrochem 30:727–731

    Article  CAS  Google Scholar 

  112. Tian M, Wen J, MacDonald D, Asmussen RM, Chen A (2010) A novel approach for lignin modification and degradation. Electrochem Commun 12:527–530

    Article  CAS  Google Scholar 

  113. Reichert E, Wintringer R, Volmer DA, Hempelmann R (2012) Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Phys Chem Chem Phys 14:5214–5221

    Article  CAS  Google Scholar 

  114. Wasserscheid P, Stark A (eds) (2010) Handbook of green chemistry: green solvents, vol 6—ionic liquids, Wiley-VCH

    Google Scholar 

  115. Peleteiro S, Rivas S, Alonso JL, Santos V, Parajo JC (2015) Utilization of ionic liquids in lignocellulose biorefineries as agents for separation, derivatization, fractionation, or pretreatment. J Agric Food Chem 63:8093–8102

    Article  CAS  Google Scholar 

  116. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl Catal A 373:1–56

    Article  CAS  Google Scholar 

  117. Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32

    Article  CAS  Google Scholar 

  118. Hossain MM, Aldous L (2012) Ionic liquids for lignin processing: dissolution, isolation, and conversion. Aust J Chem 65:1465–1477

    Article  CAS  Google Scholar 

  119. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  120. Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  121. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  122. Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    Article  CAS  Google Scholar 

  123. Lee SH, Doherty TV, Linhardt JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  124. Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58:2915–2922

    Article  CAS  Google Scholar 

  125. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    Article  CAS  Google Scholar 

  126. Pinkert A, Marsh KN, Pang SS, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  127. Maki-Arvela P, Anugwom I, Virtanen P, Sjoholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crop Prod 32:175–201

    Article  CAS  Google Scholar 

  128. Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229–1245

    Article  CAS  Google Scholar 

  129. Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  CAS  Google Scholar 

  130. Kim J-Y, Shin E-J, Eoma I-Y, Wonb K, Kim YH, Choi D, Choi IG, Choi JW (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour Technol 102:9020–9025

    Article  CAS  Google Scholar 

  131. Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047

    Article  CAS  Google Scholar 

  132. Brandt A, Grasvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    Article  CAS  Google Scholar 

  133. Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587

    Article  CAS  Google Scholar 

  134. Tan SSY, MacFarlane DR (2009) Ionic liquids in biomass processing. Top Curr Chem 290:311–339

    Article  CAS  Google Scholar 

  135. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345

    Article  CAS  Google Scholar 

  136. Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124–3136

    Article  CAS  Google Scholar 

  137. Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33

    Article  CAS  Google Scholar 

  138. Wang Y, Wei L, Li K, Ma Y, Ma N, Ding S, Wang L, Zhao D, Yan B, Wan W, Zhang Q, Wang X, Wang J, Li H (2014) Lignin dissolution in dialkylimidazolium-based ionic liquid–water mixtures. Bioresour Technol 170:499–505

    Article  CAS  Google Scholar 

  139. Lateef H, Grimes S, Kewcharoenwong P, Feinberg B (2009) Separation and recovery of cellulose and lignin using ionic liquids: a process for recovery from paper-based waste. J Chem Technol Biotechnol 84:1818–1827

    Article  CAS  Google Scholar 

  140. Diop A, Bouazza AH, Daneault C, Montplaisir D (2013) New ionic liquid for the dissolution of lignin. Bioresoure 8:4270–4282

    Google Scholar 

  141. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148

    Article  CAS  Google Scholar 

  142. George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM (2011) The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chem 13:3375–3385

    Article  CAS  Google Scholar 

  143. Li B, Filpponen I, Argyropoulos DS (2010) Acidolysis of wood in ionic liquids. Ind Eng Chem Res 49:3126–3136

    Article  CAS  Google Scholar 

  144. Cox BJ, Ekerdt JG (2012) Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour Technol 118:584–588

    Article  CAS  Google Scholar 

  145. Stärk K, Taccardi N, Bösmann A, Wasserscheid P (2010) Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 3:719–723

    Article  CAS  Google Scholar 

  146. Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12:1225–1236

    Article  CAS  Google Scholar 

  147. Zakzeski J, Bruijnincx PCA, Weckhuysen BM (2011) In situ spectroscopic investigation of the cobalt-catalyzed oxidation of lignin model compounds in ionic liquids. Green Chem 13:671–680

    Article  CAS  Google Scholar 

  148. Liu S, Shi ZL, Li L, Yu ST, Xie C, Song Z (2013) Process of lignin oxidation in an ionic liquid coupled with separation. RSC Adv 3:5789–5793

    Article  CAS  Google Scholar 

  149. Sena-Martins G, Almeida-Vara E, Duarte JC (2008) Eco-friendly new products from enzymatically modified industrial lignins. Ind Crop Prod 27:189–195

    Article  CAS  Google Scholar 

  150. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896

    Article  CAS  Google Scholar 

  151. Kirk TK, Farrell RL (1987) Enzymatic ‘‘combustion’’: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  152. Ten Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413

    Article  CAS  Google Scholar 

  153. Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TDH (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst 6:815–821

    Article  CAS  Google Scholar 

  154. Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: The Mycota. Industrial Applications, 10, pp 319–340

    Google Scholar 

  155. Vicuna R (1988) Bacterial degradation of lignin. Enzyme Microb Technol 10:646–655

    Article  CAS  Google Scholar 

  156. Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13:119–130

    Article  CAS  Google Scholar 

  157. Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400

    Article  CAS  Google Scholar 

  158. Bandounas L, Wierckx NJP, de Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11:94

    Article  CAS  Google Scholar 

  159. Brown ME, Chang MCY (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7

    Article  CAS  Google Scholar 

  160. Dey S, Maiti TK, Bhattacharyya BC (1994) Production of some extracellular enzymes by a lignin peroxidase-producing brown rot fungus, Polyporus ostreiformis, and its comparative abilities for lignin degradation and dye decolorization. Appl Environ Microbiol 60:4216–4218

    CAS  Google Scholar 

  161. Paliwal R, Rawat AP, Rawat M, Rai JPN (2012) Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 167:1865–1889

    Article  CAS  Google Scholar 

  162. DeAngelis KM, Allgaier M, Chavarria Y, Fortney JL, Hugenholtz P, Simmons B, Sublette K, Silver WL, Hazen TC (2011) Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS ONE 6:e19306

    Article  CAS  Google Scholar 

  163. Taylor CR, Hardiman EM, Ahmad M, Sainsbury PD, Norris PR, Bugg TDH (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol 113:521–530

    Article  CAS  Google Scholar 

  164. Huang X-F, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110:1616–1626

    Article  CAS  Google Scholar 

  165. Pasti MB, Pometto AL, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 56:2213–2218

    CAS  Google Scholar 

  166. Kato K, Kosaki S, Sakuranaga M (1998) Degradation of lignin compounds by bacteria from termite guts. Biotechnol Lett 20:459–462

    Article  CAS  Google Scholar 

  167. Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282:1190–1213

    Article  CAS  Google Scholar 

  168. Haemmerli SD, Leisola MSA, Fiechter A (1986) Polymerisation of lignins by ligninases from Phanerochaete chrysosporium. FEMS Microbiol Lett 35:33–36

    Article  CAS  Google Scholar 

  169. Hammel KE, Jensen KA, Mozuch MD, Landucci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268:12274–12281

    CAS  Google Scholar 

  170. Conesa A, Punt PJ, van den Hondel CAMJJ (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    Article  CAS  Google Scholar 

  171. Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS (2015) Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 33:13–24

    Article  CAS  Google Scholar 

  172. Rochefort D, Leech D, Bourbonnais R (2004) Electron transfer mediator systems for bleaching of paper pulp. Green Chem 6:14–24

    Article  CAS  Google Scholar 

  173. Reiter J, Strittmatter H, Wiemann LO, Schieder D, Sieber V (2013) Enzymatic cleavage of lignin beta-O-4-aryl ether bonds via net internal hydrogen transfer. Green Chem 15:1373–1381

    Article  CAS  Google Scholar 

  174. Otsuka Y, Sonoki T, Ikeda S, Kajita S, Nakamura M, Katayama Y (2003) Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacyl glycerol beta-aryl ether linkages. Eur J Biochem 270:2353–2362

    Article  CAS  Google Scholar 

  175. Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M (2003) Roles of the enantioselective glutathione S-transferases in cleavage of β-aryl ether. J Bacteriol 185:1768–1775

    Article  CAS  Google Scholar 

  176. Allocati N, Federici L, Masulli M, DiIlio C (2009) Glutathione transferases in bacteria. FEBS J 276:58–75

    Article  CAS  Google Scholar 

  177. Gall DL, Kim H, Lu F, Donohoe TJ, Noguera DR, Ralph J (2014) Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6 β-aryl etherase pathway. J Biol Chem 289:8656–8667

    Article  CAS  Google Scholar 

  178. Picart P, Müller C, Mottweiler J, Wiermans L, Bolm C, Dominguez de Maria P, Schallmey A (2014) From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers. ChemSusChem 7:3164–3171

    Article  CAS  Google Scholar 

  179. Masai E, Sasaki M, Minakawa Y, Abe T, Sonoki T, Miyauchi K, Katayama Y, Fukuda M (2004) A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. J Bacteriol 186:2757–2765

    Article  CAS  Google Scholar 

  180. Bugg TDH, Rahmanpour R (2015) Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol 29:10–17

    Article  CAS  Google Scholar 

  181. Chen CL, Chang HM, Kirk TK (1983) Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium. J Wood Chem Technol 3:35–57

    Article  Google Scholar 

  182. Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TDH (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156

    Article  CAS  Google Scholar 

  183. Vardon DR, Franden MA, Johnson CW, Karp EM, Guarneri MT, Linger JG, Salm MJ, Strathman TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8:617–628

    Article  CAS  Google Scholar 

  184. Kiiskinen LL, Saloheimo M (2004) Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the ascomycete Melanocarpus albomyces. Appl Environ Microbiol 70:137–144

    Article  CAS  Google Scholar 

  185. Kim S, Chmely SC, Nimos MR, Bomble YJ, Foust TD, Paton RS, Beckham GT (2011) Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J Phys Chem Lett 2:2846–2852

    Article  CAS  Google Scholar 

  186. Parthasarathi R, Romero RA, Redondo A, Gnanakaran S (2011) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2:2660–2666

    Article  CAS  Google Scholar 

  187. Beste A, Buchanan AC III (2009) Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. J Org Chem 74:2837–2841

    Article  CAS  Google Scholar 

  188. Younker JM, Beste A, Buchanan AC III (2011) Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds. ChemPhysChem 12:3556–3565

    Article  CAS  Google Scholar 

  189. Beste A, Buchanan AC III (2011) Kinetic analysis of the phenyl-shift reaction in β-O-4 lignin model compounds: a computational study. J Org Chem 76:2195–2203

    Article  CAS  Google Scholar 

  190. Beste A, Buchanan AC III (2012) Role of carbon–carbon phenyl migration in the pyrolysis mechanism of β-O-4 lignin model compounds: phenethyl phenyl ether and α-hydroxy phenethyl phenyl ether. J Phys Chem A 116:12242–12248

    Article  CAS  Google Scholar 

  191. Beste A, Buchanan AC III, Harrison RJ (2008) Computational prediction of α/β selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers. J Phys Chem A 112:4982–4988

    Article  CAS  Google Scholar 

  192. Beste A, Buchanan AC III (2012) Kinetic simulation of the thermal degradation of phenethyl phenyl ether, a model compound for the β-O-4 linkage in lignin. Chem Phys Lett 550:19–24

    Article  CAS  Google Scholar 

  193. Beste A, Buchanan AC III (2013) Computational investigation of the pyrolysis product selectivity for α-hydroxy phenethyl phenyl ether and phenethyl phenyl ether: analysis of substituent effects and reactant conformer selection. J Phys Chem A 117:3235–3242

    Article  CAS  Google Scholar 

  194. Mar BD, Qi HW, Liu F, Kulik HJ (2015) Ab initio screening approach for the discovery of lignin polymer breaking pathways. J Phys Chem A 119:6551–6562

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanny Monteil-Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Monteil-Rivera, F. (2016). Green Processes for Lignin Conversion. In: C.K. Lau, P. (eds) Quality Living Through Chemurgy and Green Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53704-6_10

Download citation

Publish with us

Policies and ethics