Skip to main content
  • 7669 Accesses

Zusammenfassung

Die Mammasonographie nahm ihren Anfang in der klinischen Anwendung zur Diagnose gutartiger und bösartiger Veränderungen der Brust in den 1970er-Jahren. Mit der fortschreitenden technischen Entwicklung zu hochauflösenden Schallsonden stellt die Mammasonographie heute ein sowohl komplementäres zu anderen bildgebenden Methoden ergänzendes, als auch ein eigenständiges diagnostisches Verfahren dar. Durch ihre den anatomischen Gegebenheiten nahen Darstellung des Drüsengewebes besitzt die Mammasonographie Vorteile in der diagnostischen Differenzierung gegenüber Methoden wie der Mammographie, die Überlagerungen der Bildebenen anwendet und die Diagnose mehr aus Sekundärphänomenen der Tumorentwicklung ableitet. Da der diagnostische Prozess »real time« abläuft, hängt die Leistungsfähigkeit der Mammasonographie – neben der technischen Ausrüstung – entscheidend von der Kompetenz des Untersuchers ab. Sind diese Voraussetzungen erfüllt, erreicht die Mammasonografie sowohl bei der symptomatischen Patientin (mit Tastbefund) als auch bei der asymptomatischen Patientin (Früherkennung) eine hohe diagnostische Treffsicherheit (Sensitivität). Zur definitiven (histologischen) Diagnosesicherung bedarf es der ultraschallgesteuerten Stanzbiopsie. Aufgefundene Herdbefunde werden nach dem ACR-BI-RADS-Atlas und nach den Kriterien der DEGUM nach Merkmalen beschrieben und einer Kategorie nach BI-RADS 1–5 entsprechend von benigne bis hochsuspekt zugeordnet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • American College of Radiology (ACR) (2003) ACR BI-RADS: Breast imaging reporting and data system. Breast imaging atlas. American College of Radiology, Reston, VA

    Google Scholar 

  • American College of Radiology (ACR) (2014) ACR BI-RADS Atlas, 5th ed. Reston, VA, American College of Radiology

    Google Scholar 

  • An YY, Kim SH, Kang, BJ (2014) Characteristic features and usefulness of MRI in breast cancer in patients under 40 years old: correlations with conventionel imaging and prognostic features. Breast Cancer 21: 302–315

    Google Scholar 

  • Appleton DC, Hackney L, Narayanan S (2014) Ultrasonography alone for diagnosis of breast cancer in women under 40. Ann R Coll Surg Engl 96: 202–206

    Google Scholar 

  • Azim HA Jr, Santoro L, Russell-Edu W, et al (2012) Prognosis of pregnancy-associated breast cancere: a metaanalysis of 30 studies. Breast Cancer 38: 843–842

    Google Scholar 

  • Berg WA, Blume JD, Cormack JB, et al (2008) Combined screening with ultrasound and mammography vs. mammography alone in women at elevated risk of breast cancer. JAMA 299: 2151–2163

    Google Scholar 

  • Berg WA, Cosgrove DO, Doré CJ, et al (2012) Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 262: 435–449

    Google Scholar 

  • Berg WA, Bandos AI, Mendelson EB, et al (2016) Ultrasound as the primary screening test for breast cancer: analysis from ACRIN 6666. J Natl Cancer Inst 108. pii:djv367. doi: 10.1093/jnci/djv367

  • Brem F, Tabar L, Duffy WS, et al (2015) Assesing improvement of breast cancer with three.dimensionel automated breast US in women with dense breast tissue: The SomoInsight Study. Radiology 274: 663–673

    Google Scholar 

  • Brem RF, Lenihan MJ, Liebermann J, Torrente J (2015) Screening breast ultrasound: past, present, and future. AJR 204: 234–240

    Google Scholar 

  • Buchberger W, Niehoff A, Obrist P, et al (2000) Clinically and mammographically occult breast lesions: detection and classification with high resolution sonography. Semin Ultrasound CT MR 21: 325–336

    Google Scholar 

  • Carlsen J, Ewertsen C, Sletting S, et al (2015) Ultrasound elastography in breast cancer diagnosis. Ultrasound Med 36 (6): 550–62

    Google Scholar 

  • Chan SW, Cheung PS, Chan S, Lau SS, et al (2008) Benefit of ultrasonography in the detection of clinically and mammographically occult breast cancer. World J Surg 32: 2593–2598

    Google Scholar 

  • Checka CM, Chun JE, Schnabel FR, Lee J, Toth H (2012) The relationship of mammographic density and age: implications for breast cancer screening. AJR 198: 292–295

    Google Scholar 

  • Chen SC, Cheung YC, Lo YF, et al (2003) Sonographic differentiation of invasive and intraductal carcinomas of the breast. BJR 76: 600–604

    Google Scholar 

  • Cho KR, Seo BK, Woo OH et al. (2016) Breast cancer detection in a screening population: comparison of digital mammography, computer-aided detection applied to digital mammography and breast ultrasound. J Breast Cancer 19: 316–323

    Google Scholar 

  • Choi YJ, Seong MH, Choi SH, Kook SH, et al (2011) Ultrasound and clinicopathological characteristics of tripel receptor-negative breast cancers. J Breast Cancer 14 (2): 119–123

    Google Scholar 

  • Choi WJ, Joo HC, Kim HH, Shin HJ et al.(2014) Comparison of automated breast volume scanning and hand-held ultrasound in the detection of breast cancer: an analysis of 5,566 patient evaluations. Asian Pac J Cancer Prev 15: 9101–9105

    Google Scholar 

  • Corsetti V, Houssami N, Aurora F, et al (2008) Breast screening with ultrasound in women with mammography-negative dense breasts: Evidence on incremental cancer detection and false positives, and associated cost. Eur J Cancer 44: 539–544

    Google Scholar 

  • Corsetti V, Houssami N, Ghirardi M, et al (2011) Evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: interval breast cancers at one year follow-up. Eur J Cancer 47: 1021–1026

    Google Scholar 

  • Cosgrove DO, Kedar RP, Bamber JC, et al (1993) Breast diseases: color Doppler US in differential diagnoses. Radiology 189: 99–104

    Google Scholar 

  • Du HY, Lin BR, Huang DP (2015) Ultrasonographic findings of tripel-negative breast cancer. Int J Clin Exp Med 8: 10040–10043

    Google Scholar 

  • Farrokh A, Wojinski S, Degenhardt F (2013) Evaluation of real-time tissue sono-elastograqphy in the assessment of 214 breast lesions: limitations of this method resulting from different histologic subtypes, tumor size and tumor localization. Ultrasound Med Biol. 39: 2264–2271

    Google Scholar 

  • Fischer T, Grigoryew M, Bossenz S et al. (2012) Sonographische Mikrokalkdetection – Potenzial einer neuen Methode. Ultraschall Med 33 (4): 357–365

    Google Scholar 

  • Foxcroft LM, Evans EB, Porter AJ (2004) The diagnosis of breast cancer in women younger than 40. Breast 13: 297–306

    Google Scholar 

  • Giger ML, Inciardi MF. Edwards A, Papaioannou J, Drukker K, Jiang Y, Brem R, Brown JB (2016) Automated breast ultrasound in breast cancer screening of women with dense breasts: reader study of mammography-negative and mammography-positive cancers. AJR 206: 1341–1350

    Google Scholar 

  • Girardi V, Tonegutti M, Ciatto S, et al (2013) Breast ultrasound in 22,131 asymptomatic women with negative mammography. Breast 22: 806–809

    Google Scholar 

  • Hackelöer BJ, Lauth G, Duda V, et al (1980) Neue Möglichkeiten der Ultraschallmammographie. Geburtshilfe Frauenheilkd 40: 301–312

    Google Scholar 

  • Hackelöer BJ, Duda V, Lauth G (1986) Ultraschall-Mammographie. Springer, Heidelberg

    Google Scholar 

  • Hille H (2011) Advances in breast ultrasound. In: Thoirs K (Hrsg) Sonography. www.intechopen.com, p 73–92

  • Hille H, Vetter M, Hackelöer BJ (2007) Die Eignung der hochfrequenten Sonographie zur Diagnostik des DCIS. Ultraschall Med 28: 307–312

    Google Scholar 

  • Hille H, Vetter M, Hackelöer BJ (2012) The accuracy of BI-RADS classification of breast ultrasound as a first-line imaging method. Ultraschall Med 33 (2): 160–163

    Google Scholar 

  • Houssami N, Turner RM (2016) Rapid review: Estimates of incremental breast cancer detection from tomosynthesis (3D-mammography) screening in women with dense breasts. Breast 30: 141–145

    Google Scholar 

  • Houssami N, Irwig L, Simpson JM, McKessar M, Blome S, Noakes J (2003) Sydney breast imaging accuracy study: comparative sensitivity and specificity of mammography and sonography in young women with symptoms. AJR 180: 935–940

    Google Scholar 

  • Hwang JY, Han BK, Ko EY et al. (2016) Screening ultrasound in women with negative mammograqphy: outcome analysis. Yonsei Med 56: 1352–1358

    Google Scholar 

  • Jellins J, Kossof G, Buddee FW, Reeve TS (1971) Ultrasonic visualization of the breast. Med Journ of Australia 1: 305–307

    Google Scholar 

  • Johnson K, Sarma D, Hwang ES (2015) Lobular breast cancer series: imaging. Breast Cancer Res 17: 94

    Google Scholar 

  • Jørgensen KJ (2012) Is the tide turning against breast screening? Breast Cancer Res 14: 107

    Google Scholar 

  • Kelly KM, Richwald GA (2011) Automated whole-breast ultrasound: advancing the performance of breast cancer screening. Semin Ultrasound CT MR 32: 273–280

    Google Scholar 

  • Kim SJ, Moon WK, Cho N, et al (2011) The detection of recurrent breast cancer in patients with a history of breast cancer surgery: comparison of clinical breast examination, mammography and ultrasonography. Acta Radiol 52: 15–20

    Google Scholar 

  • Kobayashi T (1974) Clinical evaluation of ultrasound techniques in breast tumors and malignant abdominal tumors. Excerpta Medica 191–198

    Google Scholar 

  • Kolb T, Lichy J, Jeffrey H (2002) Comparison of the performance of screening mammography, physical examination, and breast ultrasound and evaluation of factors that influence them: An analysis of 27.825 patient evaluations. Radiology 225: 165–175

    Google Scholar 

  • Krainick-Strobel U, Hahn M, Duda VF, et al (2005) Arbeitsgemeinschaft Minimalinvasive Mammainterventionen (AG MiMi) der Deutschen Gesellschaft für Senologie: Onkologie. Konsensusempfehlung zu Anwendung und Indikationen der Vakuumbiopsie der Brust unter Ultraschallsicht. Geburtsh Frauenheilk 65: 526–529

    Google Scholar 

  • Kuhl CK, Strobel K, Bieling H et al. (2017) Supplemental breast MR Imaging screening of women with average risk of breast cancer. Radiology 283: 361–370

    Google Scholar 

  • Leclere B, Molinie F, Tretarre B, Stracci F, Daubisse-Marliac L, Colonna M; GRELL Working Group (2013) Trends in incidence of breast cancer among women under 40 in seven European countries: a GRELL cooperative study. Cancer Epidemiol 37: 544–549

    Google Scholar 

  • Lee YY, Roberts CL, Dobbins T, Stavrou E, Black K, Morris J, Young J (2012) Incidence and outcomes of pregnancy-associated cancer in Australia: a population-based linkage study. BJOG 119: 1572–1582

    Google Scholar 

  • Lee SH, Chang JM, Cho N et al. (2014) Practice guideline fort the performance of breast ultrasound elastography. Ultrasonography 33: 3–10

    Google Scholar 

  • Lenz S (2011) Breast ultrasound in office gynecology – Ten years of experience. Ultraschall in Med 32: 3S

    Google Scholar 

  • Li B, Zhao X, Dai SC, Cheng W (2014) Associations between mammography and ultrasound imaging features and molecular characteristics of triple negative breast cancer. Asian Pac J Cancer Prev 15: 3555–3559

    Google Scholar 

  • Liu B, Zheng Y, Huang G et al. (2016) Breast lesions: Quantitative diagnosis using ultrasound shear wave elastography – a systematic review and meta-analysis. Ultrasound Med Biol 42: 835–847

    Google Scholar 

  • Madjar H, Ohlinger R, Mundinger A, et al (2006) BI-RADS analoge DEGUM Kriterien von Ultraschallbefunden der Brust – Konsens des Arbeitskreises Mammasonographie der DEGUM. Ultraschall Med 27: 374–379

    Google Scholar 

  • Madjar H, Becker S, Doubek K, et al (2010) Bedeutung der Mammasonographie für die Brustkrebsfrüherkennung in der gynäkologischen Praxis. Ultraschall Med 31: 289–229

    Google Scholar 

  • Merlo DF, Ceppi M, Filiberti R, Bocchini V, Znaor A, Gamulin M, Primic-Zakeli M, Bruzzi P, Bouchardy C, Fucic A, AIRTUM WG (2012) Breast cancer incidence trends in European women aged 20-39 years at diagnosis. Breast Cancer Res Treat 134: 363–370

    Google Scholar 

  • Moon WK, Im JG, Koh YH, et al (2000) US of mammographically detected clustered microcalcifications. Radiology 217: 849–854

    Google Scholar 

  • Moon HJ, Jung I, Park J, et al (2015) Comparison of cancer yields and diagnostic performance of screening mammography vs. supplemental screening ultrasound in 4394 women with average risk for breast cancer. Ultraschall Med 36: 255–263

    Google Scholar 

  • Mu WJ, Zhong WJ, Yao JY et al. (2016) Ultrasonic elastography research based on a multicenter study: Adding strain ratio after 5-point scoring evaluation or not. PLoS One 11: e0148330

    Google Scholar 

  • Myers ER, Moorman P, Gierisch JM, et al (2015) Benefits and harms of breast cancer screening, a systematic review. JAMA 314: 1615–1634

    Google Scholar 

  • Neumann JL (2014) Brustkrebs des Mannes. Frauenarzt 55: 582–586

    Google Scholar 

  • Ohuchi N, Suzuki A, Masaaki K, et al (2016) Sensitivity and specifity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-Start): a randomised controlled trial. Lancet 387: 341–348

    Google Scholar 

  • Oliveira TMG, Elias Jr JE, Melo AF, Teixeira SR, Salomao CF, Goncalves LM, Fria FM, Tiezzi DG, Andrade JM, Muglia V (2014) Evolving concepts in breast lobular neoplasia and invasive lobular carcinoma, and their impact on imaging methods. Insights Imaging 5: 183–194

    Google Scholar 

  • Pisano ED, Yaffe MJ (2014) Breast cancer screening. Should tommosynthesis replace digital mammography? JAMA 311: 2488–2489

    Google Scholar 

  • Raza S, Goldkamp AL, Chikarmane SA, et al (2010) US of breast masses categorized as BI-RADS 3, 4, and 5: pictorial review of factors influencing clinical management. RadioGraphics 30: 1199–1213

    Google Scholar 

  • Scheel JR, Lee JM, Spraque BL, et al (2015) Screening ultrasound as an adjunct to mammography in women with mammographically dense breasts. A J Obstet Gynecol 212: 9–17

    Google Scholar 

  • Schmachtenberg C, Fischer T, Hamm B, Bick U (2017) Diagnostic performance of automated breast volume scanning (ABVS) compared to handheld ultrasonography with breast MRI as the gold standard. Acad Radiol 24: 954–961

    Google Scholar 

  • Schmadeka R, Harmon BE, Singh M (2014) Triple-negative breast carcinoma: current and emerging concepts. Am J Clin Pathol 141: 462–477

    Google Scholar 

  • Schulz KD, Albert US (Hrsg) (2008) Brustkrebsfrüherkennung, S3-Leitlinie. Zuckschwerdt, München

    Google Scholar 

  • Shin HJ, Kim HH, Kim SM, et al (2008) Screening-detected and symptomatic ductal carcinoma in situ: Differences in the sonographic and pathologic features. AJR 190: 516–525

    Google Scholar 

  • Shin HJ, Kim HH, Joo HC (2015) Current status of automated breast ultrasonography. Ultrasonography 34: 165–172

    Google Scholar 

  • Shen S, Zhou Y, Xu Y et al (2015) A multi-centre randomised trial comparing ultrasound vs mammography for screening breast cancer in high-risk Chinese women. BJC 112: 998–1004

    Google Scholar 

  • Sigrist RMs, Liau J, Kaffas AE, Chammas MC, Willmann JK. (2017) Ultrasound elastograpy: review of techniques and clinical applications. Theranostics 7: 1303–1329

    Google Scholar 

  • Skaane P (2017) Breast cancer screening with digital breast tomosynthesis. Breast Cancer 24: 32–41

    Google Scholar 

  • Sohn YM, Kim MJ, Kim EK (2013) Impact of preoperative bilateral whole breast sonography in patients with invasive lobular carcinoma: results from two medical centers. Ultraschall Med 34: 359–367

    Google Scholar 

  • Stähler E, Kübler U (2015) Mammakarzinom: Früherkennung aus tumorbiologischer Sicht. Frauenarzt 56: 320–325

    Google Scholar 

  • Stavros AT (2004) Breast ultrasound. Lippincott Williams, Philadelphia, p 448

    Google Scholar 

  • Tan KP, Azlan MZ, Choo MY, et al (2014) The comparative accuracy of ultrasound and mammography in the detection of breast cancer. Med J Malaysia 69: 79–85

    Google Scholar 

  • Wang ZL, Li Y, Wan WB et aL(2017) Shear-wave-elastography: could it be helpful for the diagnosis of non-mass-like breast lesions? Ultrasound Med Biol 43: 83–90

    Google Scholar 

  • Watermann OD, Temper C, Hefler LA, et al (2004) Ultrasound morphology of invasive lobular breast cancer is different compared with other types of breast cancer. Utrasound Med Biol 31: 176–174

    Google Scholar 

  • Wilczek B, Wilczek HE, Rasoulivan L, Leifland K (2016) Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: report from a hospital-based, high-volume, single-center breast cancer screening program. Eur J Radiol 85: 1554–1563

    Google Scholar 

  • Wild JJ, Reid JM (1952) Further pilot echographic studies on the histological structure of tumors of the human breast. Am J Pathol 28: 839–861

    Google Scholar 

  • Wojcinski S, Solimann AA, Schmidt J, Makowski L, Degenhardt F (2012) Sonographic features of tripel-negative and non-tripel-negative breast cancer. J Ultrasound Med 31: 1531–1541

    Google Scholar 

  • Wojcinski S, Boehme E, Farrokh A, et al (2013a) Ultrasound real-time elastography can predict malignancy in BI-RADS-US 3 lesions. BMC Med Imaging 13: 159

    Google Scholar 

  • Wojcinski S, Gyapong S, Farrokh A, Soergel P, et al (2013b) Diagnostic performance and inter-observer concordance in lesion detection with the automated breast volume scanner (AVBS). BMC Med Imaging 13: 36

    Google Scholar 

  • Yang WT, Tse GMK (2004) Sonographic, mammographic, and histopathologic correlation of symptomatic ductal carcinoma in situ. AJR 182: 101–110

    Google Scholar 

  • Yang Q, Liu HY, Liu D, Song YQ (2015) Ultrasonographic features of tripel-negative breast cancer: a comparison with other breast cancer subtypes. Asian Pac J Cancer Prev 16: 3229–3232

    Google Scholar 

  • Ying X, Lin Y, Xia X, Hu B, Zhu Z, He P (2012) A comparison of mammography and ultrasound in women with breast disease: a receiver operating characteristic analysis. Breast J 18(2): 130–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B.-J. Hackelöer or H.-H. Hille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Hackelöer, BJ., Hille, HH. (2018). Mammasonographie. In: Gembruch, U., Hecher, K., Steiner, H. (eds) Ultraschalldiagnostik in Geburtshilfe und Gynäkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53662-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53662-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53661-2

  • Online ISBN: 978-3-662-53662-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics